SEST-6577

Geographic Information Systems for Security Studies

Lecture 04 (Georeferencing and Vectorization)

Yuri M. Zhukov Associate Professor Georgetown University

September 26, 2024

What is **georeferencing**?

- assignment of geographic objects to geographic locations
- relation of map image to system of geographic coordinates on the ground

Figure 1: This is georeferencing

What is **vectorization**?

- generation of vector features from georeferenced raster images
- opposite is called rasterization (which is much easier)

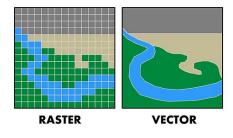


Figure 2: This is vectorization

Georeferencing Vectorization

Overview Transformations

Georeferencing

Why georeference?

- maps contain data you can't find anywhere else
- georeferencing allows us to
 - extract and preserve these data
 - combine map with other types of geospatial data
 - use these data to answer social, economic and political questions

Figure 3: NKVD jurisdictional borders

Georeferencing Vectorization Overview Transformations

Overview

What is involved?

- 1. Obtain digital image of map (e.g. scan, web)
- 2. Select ground control points
- 3. Transform map to align with chosen coordinate system

Figure 4: Step 1

Figure 5: Step 2

Figure 6: Step 3

What can we georeference?

- historical maps
- satellite and aerial photography
- administrative and military maps
- interesting maps you found online

Figure 7: Massachusetts, 1755

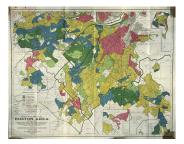


Figure 8: Boston, 1936

Figure 9: Boston, 1955

Challenges

- projection often unknown
- scale/resolution may be coarse
- distances/angles/shapes may be inaccurate (esp. in older maps)
- impossible to perfectly align historical maps with modern coordinate systems

Figure 10: Close, but not quite

Examples of GCPs

- intersections of graticule lines (most reliable)
- landmarks of known location (e.g. buildings, crossroads, hills, cities)
- distinctive geographic features (e.g. coastal features, curves in rivers, borders)

Figure 11: Graticules

Figure 12: Intersections

Figure 13: Landmarks

Georeferencing Vectorization Overview Transformations

Transformations

Transformation ("rubber sheeting")

- shift and warp the raster to spatially correct locations in original image
- apply mathematical algorithm to match source control points with target control points
- process changes distances, appearance of lines and shapes

Figure 14: Transformed raster

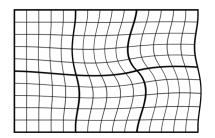


Figure 15: Rubber sheeting

Challenges

- transformation distorts original map image
- results sensitive to choice of transformation algorithm
- output only reliable within area confined by GCPs

Figure 16: Distortion

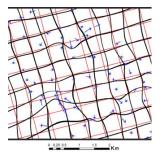


Figure 17: Algorithm

Figure 18: Range

Polynomial transformations

- uses a polynomial built on control points and a least-squares fitting algorithm
- optimized for global accuracy, not always local accuracy

Order

- $x_0 + x^1 + x^2 + x^3 + \dots + x^k$, where k is order of polynomial
- higher order \rightarrow able to correct more complex distortion
- but rarely need transformations
 3rd order

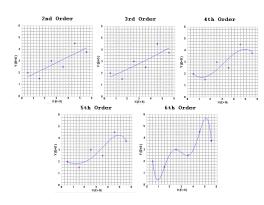


Figure 19: Higher order \rightarrow closer fit

- 0. Zero-order polynomial
 - shifts raster location
 - used when raster is already georeferenced, but slightly mis-aligned
 - requires ≥ 1 control points
- 1. First-order (Affine) polynomial
 - shift/scale/rotate a raster
 - straight lines on input raster will remain straight
 - requires ≥ 3 control points

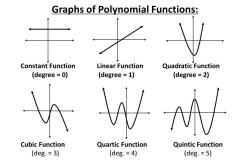


Figure 20: Examples in one dimension

2. Second-order polynomial

- applies quadratic formula to calculate raster cell position
- straight lines on input raster will be warped
- requires ≥ 6 control points

3. Third-order polynomial

- applies cubed formula
- straight lines, margins on input raster will be warped
- corrects more complex distortions
- requires ≥ 10 control points

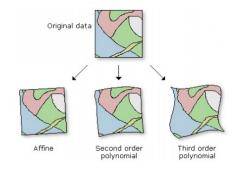


Figure 21: Examples in two dimensions

4. Projective transformation

- linear rotation, translation
- warps lines to keep them straight
- useful for oblique imagery, scanned maps
- requires ≥ 4 control points

5. Spline transformation

- uses piecewise polynomial that maintains continuity between adjacent polynomials
- optimized for local accuracy, not always global accuracy
- minimal local error
- requires > 10 control points

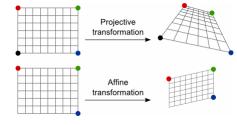


Figure 22: Projective vs. affine

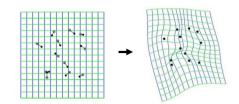


Figure 23: Spline

Georeferencing Vectorization Options Sources of error

Vectorization

- vector is standard data structure for quantities of interest to public policy and social science (e.g. events, roads, administrative zones)
- smaller data size (usually)
- objects can have multiple attributes
- allows more sophisticated spatial analyses
- preserves quality at all scales

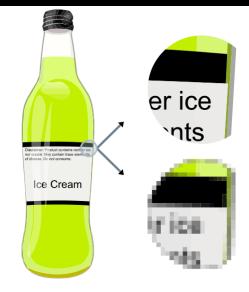


Figure 24: Enhance!

Georeferencing Vectorization Options Sources of error

Options

Two ways to identify vector features

- 1. Image tracing (manual or automated)
- 2. Computer vision (machine learning)

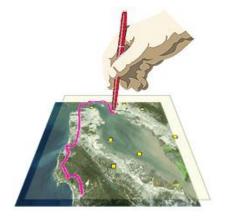


Figure 25: Trace

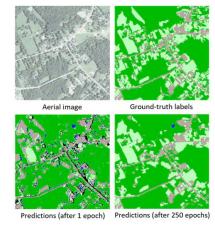


Figure 26: Learn

1. Image tracing

- drawing over a raster image with vectors
- manual tracing: tracing over the image by hand (using mouse or stylus)
- *automated tracing*: use computer algorithm to detect features, redraw them as vector points, lines, polygons

Figure 27: Manual

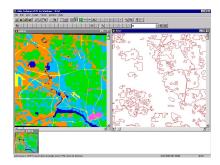


Figure 28: Automated

Manual tracing

Advantages

- can work with images of any quality
- better understanding of context/meaning
- produces fewer artifacts/superfluous features

Disadvantages

- slow, inefficient
- relatively imprecise/inconsistent
- subject to laziness/fatigue

Automated tracing

Advantages

- fast and efficient
- output is consistent, replicable Disadvantages
 - more sensitive to image quality
 - can require extensive pre-processing/cleanup
 - works best with fewer colors

2. Computer vision / deep learning

- automated feature detection, extraction
- system "learns" what is/isn't a feature through training data (e.g. examples of points, lines, polygons in raster images)
- cross-validation of results to improve predictive fit
- examples:
 - convolutional neural networks
 - recurrent neural networks
 - long short term memory models
 - transformer models

Figure 29: Which houses have pools

Machine learning

Advantages

- fast and efficient
- well-suited for large-scale tasks, where fixed rules lead to systematic errors

Disadvantages

- requires large volume of training data
- requires high-performance computing infrastructure, programming expertise
- same pre-/post-processing issues as automated tracing
- not (yet) available in standard GIS software

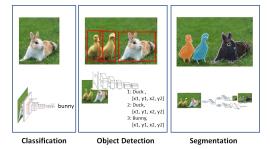


Figure 30: Computer vision tasks

Georeferencing Vectorization Options Sources of error

Sources of error

Automated vectorization

- 1. Raster-to-point
 - all non-zero/non-null cells become points
- 2. Raster-to-line
 - trace positions of non-zero/ non-null pixels to identify polyline features
- 3. Raster-to-polygon
 - use groups of connected pixels with identical values to find areas of a raster
 - determine intersection points of area boundaries, generate lines

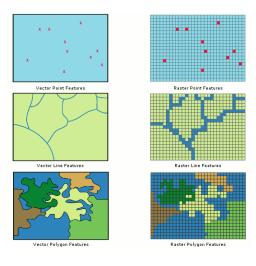


Figure 31: Usually not so seamless

Types of vectorization errors

- 1. False positives
 - identification of features where none exist (generates small/superfluous vertices that must be removed)
- 2. False negatives
 - failure to identify features where they exit (creates gaps, incomplete features)

How to reduce errors

- 1. Pre-processing
 - remove noise, unnecessary elements, colors
- 2. Post-processing
 - remove superfluous features, fill gaps, improve appearance

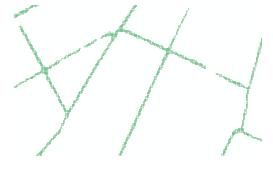


Figure 32: Vectorized "roads"

1. Pre-processing of rasters

- reclassification: conversion from color/greyscale to binary
- thinning: reduce thickness of features to a single, connected lines of pixels

Figure 33: Thinning example

- 2. Post-processing of vector features
 - collapsing: simplification by removal of spurious nodes, segments, closing of gaps
 - smoothing: generalization/ averaging to smooth pixelated appearance of output vectors

Figure 34: Lots to clean up