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Inefficiency of OLS estimators

I In a time-series context, the OLS estimator remains consistent
even when a lagged dependent variable is present, as long as
the error term does not show serial correlation.

I While the estimator may be biased in small samples, it can
still be used for asymptotic inference.

I In a spatial context, this rule does not hold, irrespective of the
properties of the error term.

I Consider the first-order SAR model (covariates omitted):

y = ρWy + ε

I The OLS estimate for ρ would be:

ρ̂ =
(

(Wy)′(Wy)
)−1

(Wy)′y = ρ+
(

(Wy)′(Wy)
)−1

(Wy)′ε

I Similar to time series, the second term does not equal zero
and the estimator will be biased.



Inefficiency of OLS estimators

I Asymptotically, the OLS estimator will be consistent if two
conditions are met:

plim N−1(Wy)′(Wy) = Q a finite and nonsingular matrix

plim N−1(Wy)′ε = 0

I While the first condition can be satisfied with proper
constraints on ρ and the structure of W, the second does not
hold in the spatial case:

plim N−1(Wy)′ε = plim N−1ε′(W)(In − ρW)−1ε 6= 0

I The presence of W in the expression results in a quadratic
form in the error term.

I Unless ρ = 0, the plim will not converge to zero.



Properties of Maximum Likelihood Estimators

By contrast with OLS, maximum likelihood estimators (MLE) have
attractive asymptotic properties, which apply in the presence of
spatially lagged terms. ML estimates will exhibit consistency,
efficiency and asymptotic normality if the following conditions are
met:

I A log-likelihood for parameters of interest must exist (i.e.:
non-degenerate lnL)

I The log-likelihood must be continuously differentiable

I Boundedness of various partial derivatives

I The existence, positive definiteness and/or non-singularity of
covariance matrices

I Finiteness of various quadratic forms

The various conditions are typically met when the structure of
spatial interaction, expressed jointly by the autoregressive
coefficient and the weights matrix, is nonexplosive (Anselin 1988).



Two-stage techniques

Instrumental variable estimation has similar asymptotic properties
to MLE, but can be easier to implement numerically.

I Recall that the failure of OLS in models with spatially lagged
DV’s is due the correlation between the spatial variable and
the error term (plim N−1(Wy)′ε 6= 0)

I This endogeneity issue can be addressed with two-stage
methods based on the existence of a set of instruments Q,
which are strongly correlated with the original variables
Z = [Wy X], but asymptotically uncorrelated with the error
term.



Two-stage techniques

I Where Q is of the same column dimension as Z, the
instrumental variable estimate θIV is

θIV = [Q′Z]−1Q′y

I In the general case where the dimension of Q is larger than Z,
the problem can be formulated as a minimization of the
quadratic distance from zero:

minΦ(θ) = (y − Zθ)′Q(Q′Q)−1Q′(y − Zθ)

I The solution to this optimization problem is the IV estimator
θIV

θIV = [Z′PQZ]−1Z′PQy

with PQ = Q[Q′Q]−1Q′ an idempotent projection matrix



Two-stage techniques

I PQZ can be seen to correspond to a matrix of predicted values
from regressions of each variable in Z on the instruments in Q

PQZ = Q{[Q′Q]−1Q′Z}

I where the bracketed term is the OLS estimate for a regression
of Z on Q.

I Let Zp be the predicted values of Z. Then the IV estimator
can also be expressed as

θIV = [Z′pZ]−1Z′py

I which is the 2SLS estimator.



Two-stage techniques

Instrumental variable approaches are highly sensitive to the choice
of instruments. Several options exist:

I Spatially lagged predicted values from a regression of y on
non-spatial regressors (Wy∗) (Anselin 1980).

I Spatial lags of exogenous variables (WX) (Anselin 1980,
Kelejian and Robinson 1993).

I In a spatiotemporal context, a time-wise lagged dependent
variable or its spatial lag (Wyt−1) (Haining 1978).



Spatial autoregressive model (SAR): Likelihood function

I The full log-likelihood has the form:

lnL = −n

2
ln(πσ2) + ln|In − ρW| −

e ′e

2σ2

e = (In − ρW)y − Xβ

I It follows that the maximization of the likelihood is equivalent
to a minimization of squared errors, corrected by the
determinants from the Jacobian (Anselin 1988).

I This correction – and particularly the spatial term in
|In − ρW| – will keep the least squares estimate from being
equivalent to MLE.



Spatial autoregressive model (SAR): Likelihood function

I The most demanding part of the functions called to optimize
the spatial autoregressive coefficient is the calculation of the
Jacobian, the log-determinant of the n × n matrix |In − ρW|

I One option is to express the determinant as a function of the
eigenvalues ω of W (Ord 1975):

ln|In − ρW| = ln
n∏

i=1

(1− ρωi ) =
n∑

i=1

ln(1− ρωi )

I An alternative approach is brute-force calculation of the
determinant and inverse matrix at each iteration.



OLS vs. SAR

Consider the following linear regression of Obama’s margin of
victory (y) on county-level socio-economic attributes (X):
y = Xβ + ε.

OLS

(Intercept) -35.58
(6.23)***

Percent non-white 1.09
(0.06)***

Percent college-educated 1.65
(0.15)***

Veterans -2.6e-4
(1.2e-4)*

Median income -7e-4
(1.6e-4)***

AIC 729.2
N 100

Moran’s I Residuals 0.25***
*p ≤ .05, **p ≤ .01, ***p ≤ .001

The Moran’s I statistic shows a significant amount of spatial
autocorrelation in the residuals.



OLS Residuals

Below is a map of residuals from a linear regression of Obama’s
margin of victory on county-level socio-economic attributes.

Residuals from OLS Model
(, -10) [-10, -5) [-5, 5) [5,10) [10, )



OLS vs. SAR

And the same model estimated by SAR: y = ρWy + Xβ + ε.

OLS SAR

(Intercept) -35.58 -28.40
(6.23)*** (7.05)***

Percent non-white 1.09 0.98
(0.06)*** (0.08)***

Percent college-educated 1.65 1.62
(0.15)*** (0.14)***

Veterans -2.6e-4 -1.8e-4
(1.2e-4)* (1e-4)

Median income -7e-4 -7.8e-4
(1.6e-4)*** (1.6e-4)***

Lagged Obama margin (ρ) 0.16
(0.08)*

AIC 729.2 727.09
N 100 100

Moran’s I Residuals 0.25*** 0.15**
*p ≤ .05, **p ≤ .01, ***p ≤ .001

The ρ coefficient is positive and significant, indicating spatial autocorrelation in

the dependent variable. But Moran’s I indicates that residuals remain

clustered.



SAR Residuals

Below is a map of residuals from the SAR model.

Residuals from SAR Model
(, -10) [-10, -5) [-5, 5) [5,10) [10, )



SAR Equilibrium Effects

I Because of the dependence structure of the SAR model,
coefficient estimates do not have the same interpretation as in
OLS.

I The β parameter reflects the short-run direct impact of xi on
yi . However, we also need to account for the indirect impact
of xi on yi , from the influence yi exerts on its neighbors yj ,
which in turn feeds back into yi .

I The equilibrium effect of a change in xi on yi can be
calculated as:

E[∆y ] = (In − ρW)−1∆X

where ∆X is a matrix of changes to the covariates, and ∆y is
the associated change in the dependent variable.

I Since each unit will have a different set of connectivities to its
neighbors, the impact of a hypothetical change in xi will
depend on which unit is being changed.



SAR Equilibrium Effects

I Counterfactual: A 50% decline in Durham’s college-educated
population.

I Below are the equilibrium effects (change in Obama’s county
vote margin) associated with this counterfactual.

Counterfactual: Durham college population drops in half.
 Quantity of interest: Change in Obama vote margin

[-35.99, -18.78)
[-18.78, -0.45)

[-0.45, -0.09)
[-0.09, -0.03)

[-0.03, -0.01)
[-0.01, 0]

SAR

Counterfactual: Durham college population drops in half.
 Quantity of interest: Change in Obama vote margin

-35.99
0

OLS



Spatially lagged error

I Use of the spatial error model may be motivated by omitted
variable bias.

I Suppose that y is explained entirely by two explanatory
variables x and z , where x , z ∼ N(0, In) and are independent.

y = xβ + zθ

I If z is not observed, the vector zθ is nested into the error term
ε.

y = xβ + ε

I Examples of latent variable z : culture, social capital,
neighborhood prestige.



Spatially lagged error

I But we may expect the latent variable z to follow a spatial
autoregressive process.

z = λWz + r

z = (In − λW)−1r

I where r ∼ N(0, σ2In) is a vector of disturbances, W is the
spatial weights matrix, and λ is a scalar parameter.

I Substituting this back into the previous equation, we have the
DGP for the spatial error model (SEM) :

y = Xβ + zθ

y = Xβ + (In − λW)−1u

I where u = θr



Spatially lagged error

I In addition to omitted variable bias, another motivation for
the spatial error model might be spatial heterogeneity.

I Suppose we have a panel data set, with multiple observations
for each unit.

I If we want our model to incorporate individual effects, we can
include an n× 1 vector a of individual intercepts for each unit:

y = a + Xβ

I But in a cross-sectional setting, with one observation per unit,
this approach is not feasible, since we’ll have more parameters
than observations.



Spatially lagged error

I Instead, we can treat a as a vector of spatial random effects.

I We assume that the vector of intercepts a follows a spatial
autoregressive process:

a = λWa + ε

a = (In − λW)−1ε

I where ε ∼ N(0, σ2In) is a vector of disturbances

I Substituting this into the previous model yields the DGP of
the SEM:

y = Xβ + a

y = Xβ + (In − λW)−1ε



Spatially lagged error: Likelihood function

I The full log-likelihood has the form:

lnL = −n

2
ln(πσ2) + ln|In − λW| −

e ′e

2σ2

e = (In − λW)(y − Xβ)



Spatially lagged error: Interpretation of coefficients

I The SEM is essentially a generalized normal linear model with
spatially autocorrelated disturbances.

I Assuming independence between X and the error term, least
squares estimates for β are not efficient, but still unbiased.

I Because the SEM does not involve spatial lags of the
dependent variable, estimated β parameters can be
interpreted as partial derivatives:

βk =
δyi
δxjk

∀ i , k

I where i indexes the observations and k indexes the
explanatory variables.



SEM Estimates

Let’s run the model: y = Xβ + λWu + ε.

OLS SAR SEM

(Intercept) -35.58 -28.40 -38.67
(6.23)*** (7.05)*** (7.34)***

Percent non-white 1.09 0.98 1.16
(0.06)*** (0.08)*** (0.07)***

Percent college-educated 1.65 1.62 1.44
(0.15)*** (0.14)*** (0.13)***

Veterans -2.6e-4 -1.8e-4 -1.5e-4
(1.2e-4)* (1e-4) (1e-4)

Median income -7e-4 -7.8e-4 -5.9e-4
(1.6e-4)*** (1.6e-4)*** (1.6e-4)***

Lagged Obama margin (ρ) 0.16
(0.08)*

Lagged error (λ) 0.53
(0.11)***

AIC 729.2 727.09 715.74
N 100 100 100

Moran’s I Residuals 0.25*** 0.15** -0.003
*p ≤ .05, **p ≤ .01, ***p ≤ .001

The λ coefficient indicates strong spatial dependence in the errors.



SEM Residuals

Below is a map of residuals from the SEM model.

Residuals from SEM Model
(, -10) [-10, -5) [-5, 5) [5,10) [10, )



Spatial Durbin Model

I Like the SEM, the Spatial Durbin Model can be motivated by
concern over omitted variables.

I Recall the DGP for the SEM:

y = Xβ + (In − λW)−1u

I Now suppose that X and u are correlated.
I One way to account for this correlation would be to conceive

of u as a linear combination of X and an error term v that is
independent of X.

u = Xγ + v

v ∼ N(0, σ2In)

I where the scalar parameter γ and σ2 govern the strength of
the relationship between X and z = (In − λW)−1



Spatial Durbin Model

I Substituting this expression for u, we have the following DGP:

y = Xβ + (In − λW)−1(γX + v)

y = Xβ + (In − λW)−1γX + (In − λW)−1v

(In − λW)y = (In − λW)Xβ + γX + v

y = λWy + X(β + γ) + WX(−λβ) + v

I This is the Spatial Durbin Model (SDM), which includes a
spatial lag of the dependent variable y, as well as the
explanatory variables X.



Spatial Durbin Model

I The Spatial Durbin Model can also be motivated by concern
over spatial heterogeneity.

I Recall the vector of intercepts a:

a = (In − λW)−1ε

I Now suppose that X and ε are correlated.
I As before, let’s restate ε as a linear combination of X and

random noise v.

a = Xγ + v

I Substituting this back into the SEM yields the same
expression of SDM as before:

y = λWy + X(β + γ) + WX(−λβ) + v



Spatial Durbin Model: Likelihood function

I Let’s restate the SDM as follows:

y = ρWy + αιn + Xβ + WXθ + ε

I The log-likelihood has a similar form to the SEM:

lnL = −n

2
ln(πσ2) + ln|In − ρW| −

e ′e

2σ2

e = y − ρWy − Zδ

I where Z = [ιn X WX], δ = [α β θ], and ρ is bounded
by (min(ω)−1,max(ω)−1), where ω is an n × 1 vector of
eigenvalues of W.



SDM Estimates

Let’s try running the SDM: y = ρWy + αιn + Xβ + WXθ + ε

OLS SAR SEM SDM

(Intercept) -35.58 -28.40 -38.67 -26.22
(6.23)*** (7.05)*** (7.34)*** (9.66)***

Percent non-white 1.09 0.98 1.16 1.23
(0.06)*** (0.08)*** (0.07)*** (0.92)***

...
...

...
...

...
Lagged Obama margin (ρ) 0.16 0.42

(0.08)* (0.12)**
Lagged error (λ) 0.53

(0.11)***
Lagged non-white (θnon-white) -0.59

(0.17)***
...

...
AIC 729.2 727.09 715.74 714.22
N 100 100 100 100

Moran’s I Residuals 0.25*** 0.15** -0.003 0.003
*p ≤ .05, **p ≤ .01, ***p ≤ .001

The SDM results in a slightly better fit...



SDM Residuals

Below is a map of residuals from the SDM model.

Residuals from SDM Model
(, -10) [-10, -5) [-5, 5) [5,10) [10, )



Geographically Weighted Regression (GWR)

I A key assumption that we have made in the models examined
thus far is that the structure of the model remains constant
over the study area (no local variations in the parameter
estimates).

I If we are interested in accounting for potential spatial
heterogeneity in parameter estimates, we can use a
Geographically Weighted Regression (GWR) model
(Fotheringham et al., 2002).

I GWR permits the parameter estimates to vary locally, similar
to a parameter drift for a time series model.

I GWR has been used primarily for exploratory data analysis,
rather than hypothesis testing.



Geographically Weighted Regression (GWR)

I GWR rewrites the linear model in a slightly different form:

yi =Xβi + ε

where i is the location at which the local parameters are to be
estimated.

I Parameter estimates are solved using a weighting scheme:

βi =(X′WiX)−1X′Wiy

I where the weight wij for the j observation is calculated with a
Gaussian function.

wij =e

(
−dij
h

)2

where di ,j is the Euclidean distance between the location of
observation i and location j , and h is the bandwidth.

I Bandwidth may be user-defined or selected by minimization of
root mean square prediction error.



GWR Estimates

Let’s try running the same election model as before with GWR:

Geographically Weighted Regression
Global Min Median Max S.E.

(Intercept) -35.58 -55.42 -37.65 -24.81 (8.64)
Percent non-white 1.09 0.99 1.12 1.25 (0.06)

Percent college-educated 1.65 1.44 1.63 1.83 (0.11)
Veterans -3e-4 -3e-4 2.6e-4 -8e-5 (6e-5)

Median income -7e-4 -1e-3 -9e-4 -3e-4 (2e-4)
Bandwidth 245131.2

N 100
Moran’s I Residuals 0.218

Moran’s I Std. Deviate 3.645***
’p ≤ .1, *p ≤ .05, **p ≤ .01, ***p ≤ .001



GWR Local Coefficient Estimates

Below is a map of local coefficients. The relationship between
college education and Obama’s victory margin is largest in red
areas, and smallest in green areas.

Local Coefficient Estimates (% college educated)
[1.4,1.5)
[1.5,1.6)

[1.6,1.7)
[1.7,1.8)

[1.8,1.9]



GWR Local Coefficient Estimates

A more interesting example...
The relationship b/w per capita income and Bush’s victory margin
is negative in red areas, and positive in green areas.

Local Coefficient Estimates (per capita income)
[-0.005,-0.003)
[-0.003,-0.001)

[-0.001,0.001)
[0.001,0.003)

[0.003,0.005]



GWR Residuals

Below is a map of residuals from the GWR model.

Residuals from GWR Model
(, -10) [-10, -5) [-5, 5) [5,10) [10, )



Extensions: Spatial Autocorrelation Model (SAC)

I The SAC model contains spatial dependence in both the
dependent variable and the errors, with (potentially) two
different weights matrices.

y = ρW1y + Xβ + λW2u + ε

y = (In − ρW1)−1Xβ + (In − ρW1)−1(In − λW2)−1ε

ε ∼ N(0, σ2In)

I The log-likelihood has the form:

lnL = −n

2
ln(πσ2) + ln|In − ρW1|+ ln|In − λW2| −

e ′e

2σ2

e = (In − λW2)
(
(In − ρW1)y − Xβ)

)



Extensions: Spatial Autoregressive Moving Average Model
(SARMA)

I Like the SAC, the SARMA model also contains spatial
dependence in the dependent variable and the errors.

y = ιnα + ρW1y + Xβ + (In − θW2)ε

y = (In − ρW1)−1(Xβ + ιnα) + (In − ρW1)−1(In − θW2)ε

ε ∼ N(0, σ2In)

I The main distinction between the SAC and SARMA is the
series representation of the inverse (In − θW2).

I As a result, the SAC places more emphasis on higher order
neighbors.



Extensions: Spatial Durbin Error Model (SDEM)

I The SDEM model contains spatial dependence in both the
explanatory variables and the errors.

y = ιnα + Xβ + WXγ + (In − ρW)−1ε

ε ∼ N(0, σ2In)

I Direct impacts correspond to the β parameters; indirect
impacts correspond to the γ parameters

I The model can be generalized to incorporate two weights
matrices without affecting interpretation of parameters:

y = ιnα + Xβ + W1Xγ + (In − ρW2)−1ε



Examples in R

Switch to R tutorial script.
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