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What is Spatial Autocorrelation?

I Spatial autocorrelation measures the degree to which a
phenomenon of interest is correlated to itself in space.

I Tests of spatial autocorrelation examine whether the observed
value of a variable at one location is independent of values of
that variable at neighboring locations.

I Positive spatial autocorrelation indicates that similar values
appear close to each other, or cluster, in space

I Negative spatial autocorrelation indicates that neighboring
values are dissimilar or, equivalenty, that similar values are
dispersed.

I Null spatial autocorrelation indicates that the spatial pattern
is random.
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Global autocorrelation: Moran’s I

I The Moran’s I coefficient calculates the ratio between the
product of the variable of interest and its spatial lag, with the
product of the variable of interest, adjusted for the spatial
weights used.

I =
n∑n
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j=1 wij
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I where yi is the value of a variable for the ith observation, ȳ is
the sample mean and wij is the spatial weight of the
connection between i and j .

I Values range from –1 (perfect dispersion) to +1 (perfect
correlation). A zero value indicates a random spatial pattern.

I Under the null hypothesis of no autocorrelation, E[I] = −1
n−1



Global autocorrelation: Moran’s I

I Calculating the variance of Moran’s I is a little more involved:
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Global autocorrelation: Geary’s C

I The Geary’s C uses the sum of squared differences between
pairs of data values as its measure of covariation.

C =
(n − 1)
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∑
j wij(yi − yj)
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I where yi is the value of a variable for the ith observation, ȳ is
the sample mean and wij is the spatial weight of the
connection between i and j .

I Values range from 0 (perfect correlation) to 2 (perfect
dispersion). A value of 1 indicates a random spatial pattern.



Global autocorrelation: Join Counts

I When the variable of interest is categorical, a
join count analysis can be used to assess the degree of
clustering or dispersion.

I A binary variable is mapped in two colors (Black & White),
such that a join, or edge, is classified as either WW (0-0), BB
(1-1), or BW (1-0).

I Join count statistics can show
I positive spatial autocorrelation (clustering) if the number of

BW joins is significantly lower than what we would expect by
chance,

I negative spatial autocorrelation (dispersion) if the number of
BW joins is significantly higher than what we would expect by
chance,

I null spatial autocorrelation (random pattern) if the number of
BW joins is approximately the same as what we would expect
by chance.



Global autocorrelation: Join Counts

I By the naive definition of probability, if we have nB Black
units and nW = n − nB White units, the respective
probabilities of observing the two types of units are:

PB =
nB
n

PW =
n − nB

n
= 1− PB

I The probabilities of BB and WW in two adjacent cells are

PBB = PBPB = P2
B PWW = (1− PB)(1− PB) = (1− PB)2

I The probability of BW in two adjacent cells is

PBW = PB(1− PB) + (1− PB)PB = 2PB(1− PB)



Global autocorrelation: Join Counts

I The expected counts of each type of join are:
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on a map, assuming a binary connectivity matrix.
I The observed counts are:
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I where yi = 1 if unit i is Black and yi = 0 if White.



Global autocorrelation: Join Counts

I The variance of BW is calculated as
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Global autocorrelation: Join Counts

I A test statistic for the BW join count is

Z(BW ) =
BW − E[BW ]√

σ2
BW

I The join count statistic is assumed to be asymptotically
normally distributed under the null hypothesis of no spatial
autocorrelation.

I The test of significance is then provided by evaluating the
BW statistic as a standard deviate (Cliff and Ord, 1981).



Local autocorrelation

I Global tests for spatial autocorrelation are calculated from
local relationships between observed values at spatial units
and their neighbors.

I It is possible to break these measures down into their
components, thus constructing local tests for spatial
autocorrelation.

I These tests can be used to detect
I Clusters, or units with similar neighbors
I Enclaves, or units with dissimilar neighbors



Local autocorrelation

Below is a scatterplot of county vote for Obama and its spatial lag
(average vote received in neighboring counties). The Moran’s I
coefficient is drawn as the slope of the linear relationship between
the two. The plot is partitioned into four quadrants: low-low,
low-high, high-low and high-high.
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Local autocorrelation: Local Moran’s I

I A local Moran’s I coefficient for unit i can be constructed as
one of the n components which comprise the global test:

Ii =
(yi − ȳ)

∑n
j=1 wij(yj − ȳ)∑n

i=1(yi−ȳ)2

n

I As with global statistics, we assume that the global mean ȳ is
an adequate representation of the variable of interest.

I As before, local statistics can be tested for divergence from
expected values, under assumptions of normality.



Local autocorrelation: Local Moran’s I
Below is a plot of Local Moran |z |-scores for the 2008 Presidential
Elections. Higher absolute values of z scores (red) indicate the
presence of “enclaves”, where the percentage of the vote received
by Obama was significantly different from that in neighboring
counties.
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Words of Caution

1. By themselves, spatial autocorrelation tests do not always
produce useful insights into the DGP.

2. These tests are also highly sensitive to one’s choice of
spatial weights. Where the weights do not reflect the “true”
structure of spatial interaction, estimated autocorrelation (or
lack thereof) may actually stem from misspecification.
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Words of Caution

Below is a correlogram of Moran’s I coefficients for Polity IV
country democracy scores in 2008. The x-axis represents distances
between country capitals, in kilometers. Here, democracy is
significantly (p ≤ .05) spatially autocorrelated only at distances of
3,000 km and below. So, autocorrelation estimates will depend
highly on choice of lag distance.
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Words of Caution

1. By themselves, spatial autocorrelation tests do not always
produce useful insights into the DGP.

2. These tests are also highly sensitive to one’s choice of
spatial weights. Where the weights do not reflect the “true”
structure of spatial interaction, estimated autocorrelation (or
lack thereof) may actually stem from misspecification.

3. As originally designed, spatial autocorrelation tests assumed
there are no neighborless units in the study area.
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Choosing your neighbors?

I Most spatial weights matrices W are based on some version of
a connectivity matrix C.

I C is an n × n binary matrix, where i = {1, 2, . . . , n} and
j = {1, 2, . . . , n} are the units in the system (for example,
countries in the international system).

I Entry cij = 1 if two units i 6= j are considered connected, and
cij = 0 if they are not.

I The tricky part is how the word “connected” is defined.



Areal Contiguity I: Regular Grids

Rook’s case
Cells sharing a common edge
are considered contiguous
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j
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Areal Contiguity I: Regular Grids

Bishop’s case

Cells sharing a common vertex
are considered contiguous

i

j j

j j



Areal Contiguity I: Regular Grids

Queen’s case
Cells sharing a common edge
or common vertex are
considered contiguous
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Areal Contiguity I: Regular Grids

Second-order neighbors:
(rook’s case)

Cells sharing a common edge
with first-order neighbors are
considered contiguous
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Areal Contiguity I: Regular Grids

I These conceptions of contiguity are useful when dealing with
regular square grids or rectangular lattices, where the spatial
structure can be easily summarized in elegant mathematical
terms.

I But when spatial units consist of irregularly-shaped polygons,
as is the case in most applied work (countries, census tracts,
various administrative units), this simple characterization
breaks down...



Areal Contiguity II: Polygons

Figure: Contiguity neighbors



Areal Contiguity II: Polygons

Figure: Contiguity neighbors



Interpoint Distance

Thresholding

cTHRES(i , j) = 1{i , j ∈ S : d(i , j) ≤ r}

k nearest neighbor

cKNN(i , j) = 1{i , j ∈ S : d(i , j) ≤ d(k)(i ,−)}

Sphere of Influence

cSOI (i , j) = 1{i , j ∈ S : Oi ∩ Oj 6= ∅}



Network neighbors

The structure of spatial dependence can be non-geographic. Any
theoretically-relevant dyadic relationship can form the basis of
connectivity.

I Individual level: friendship, frequency of communication,
citations, kinship.

I Organizational level: market competition, joint enterprises,
personnel exchanges.

I International level: alliance relationship, trade flows, joint
organizational membership, diplomatic contacts, cultural
exchanges, migration flows.



Other options
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From Connections to Weights

I Once a definition of connectivity is made, one must translate binary
indicators into weights, which will form the elements wij of matrix
W.

I A plethora of options exist: inverse distance (IDW), negative
exponentials of distance, length of shared boundary, relative area,
accessibility...

I The rows of W are often row-standardized, so that
∑n

j=1 wij = 1

I Row standardization facilitates interpretation of lagged variables as
a weighted average of neighboring values.

I This also ensures that principal eigenvalue is 1 (useful for
optimization in regression models).

I Bottom line: the weights should bear a direct relation to one’s
theoretical conceptualization of the structure of dependence.



Sparse vs. Dense Matrices

Sparsity carries a number of substantive and computational
advantages:

I Dense matrices are noisy and contain a potentially large
number of irrelevant connections.

I Dense matrices will bias downward indirect effects of a change
in observation j (the individual weights of non-zero entries in
row-standardized weight matrices will be smaller).

I Dense matrices can be computationally intensive to the point
that even simple matrix operations are infeasible.



Sparse vs. Dense Matrices

Consider the following example with 2000 U.S. Census data:

Tracts
n = 65, 443
31.90 GB of storage required for dense matrix, .01 GB for sparse
matrix.

Block Groups

n = 208, 790
324.80 GB of storage required for dense matrix, .03 GB for sparse
matrix.

Blocks
n = 8, 205, 582
501,659.33 GB of storage required for dense matrix, 1.10 GB for
sparse.

Here, dense and sparse matrices have n2 and 6/n nonzero
elements, respectively. For spatially random data on a plane, each
unit will have an average of 6 contiguity neighbors.



Ordering of Weights Matrix

Ordering of rows and columns matters greatly for computation
times.

I Consider an n × n permutation matrix P, which has exactly
one entry 1 in each row and each column and 0’s elsewhere.
Each permutation matrix can produce a reordered weights
matrix WP , by the operation WP = PWP′.

I Note that P−1 = P′, |P| = 1 and
|P(In−ρW)P′| = |P||In−ρW||P′| = |In−ρW| = |In−ρPWP′|

I Thanks to these properties, log-determinant calculation and
other matrix operations will not be affected by the reordering
of W.

I But computation times for these operations are affected.



Ordering of Weights Matrix

Efficiency is increased if ordering is geographic (north-south or
east-west)

I This ordering concentrates nonzero elements around the
diagonal, which reduces the bandwidth of a matrix (max |i − j |
for nonzero elements).

I For a sample of 62,226 U.S. Census Tracts, calculation of a
single log-determinant requires over 12 GB of memory for a
randomly ordered weights matrix, making calculation
infeasible on most machines.

I The same operation takes less than a minute for a
geographically-ordered matrix.



Examples in R

Switch to R tutorial script.
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