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Overview

1 Introduction
Why use spatial methods?
The spatial autoregressive data generating process

2 Spatial Data and Basic Visualization in R
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Polygons
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3 Spatial Autocorrelation

4 Spatial Weights

5 Point Processes

6 Geostatistics
7 Spatial Regression

Models for continuous dependent variables
Models for categorical dependent variables
Spatiotemporal models
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Introduction Why use spatial methods?

Motivations for going spatial

Independence assumption not valid

The attributes of observation i may influence the attributes of j .

Spatial heterogeneity

The magnitude and direction of a treatment effect may vary across space.

Omitted variable bias

There may be some unobserved or latent influences shared by geographical
or network “neighbors”.
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Introduction Why use spatial methods?

Illustrative examples

Epidemiology

How to model the spread of a contagious disease?

Criminology

How to identify crime hot spots?

Real estate

How to predict housing prices?

Counterinsurgency

“Oil spot” modeling and clear-hold-build

Organizational learning and network diffusion

How to model the adoption of an innovation?
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Introduction Spatial autoregressive data generating process

Non-spatial DGP

In the linear case:

yi =Xiβ + εi

εi ∼N(0, σ2), i = 1, . . . , n

Assumptions

Observed values at location i independent of those at location j

Residuals are independent (E [εiεj ] = E [εi ]E [εj ] = 0)

The independence assumption greatly simplifies the model, but may be
difficult to justify in some contexts...
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Introduction Spatial autoregressive data generating process

Spatial DGP

With two neighbors i and j :

yi =αjyj + Xiβ + εi

yj =αiyi + Xjβ + εj

εi ∼N(0, σ2), i = 1

εj ∼N(0, σ2), j = 2

Assumptions

Observed values at location i depend on those at location j , and vice
versa

Data generating process is “simultaneous” (more on this later)
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Introduction Spatial autoregressive data generating process

Spatial DGP

With n observations, we can generalize:

yi =ρ
n∑

j=1

Wijyj + Xiβ + εi

εi ∼N(0, σ2), i = 1, . . . , n

In matrix notation:

y =ρWy + Xβ + ε

ε ∼N(0, σ2In)

where W is the spatial weights matrix, ρ is a spatial autoregressive scalar
parameter, and In is an n × n identity matrix
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Introduction Spatial autoregressive data generating process

Spatial DGP

When ρ = 0, the variable in not spatially autocorrelated. Information
about a measurement in one location gives us no information about
the value in neighboring locations (spatial independence).

When ρ > 0, the variable in positively spatially autocorrelated.
Neighboring values tend to be similar to each other (clustering).

When ρ < 0, the variable in negatively spatially autocorrelated.
Neighboring values tend to be different to each other (segregation).
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Introduction Spatial autoregressive data generating process

Spatial DGP

Let’s develop this further, for the moment dropping Xβ and introducing
constant term vector of ones ιn:

y = ρWy + ιnα + ε

(In − ρW)y = ιnα + ε

y = (In − ρW)−1ιnα + (In − ρW)−1ε

ε ∼ N(0, σ2In)
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Introduction Spatial autoregressive data generating process

Spatial DGP

Assuming |ρ| < 1, the inverse can be expressed as an infinite series

(In − ρW)−1 = In + ρW + ρ2W2 + ρ3W3 + . . .

implying that

y = ιnα + ρWιnα + ρ2W2ιnα + . . .

+ ε+ ρWε+ ρ2W2ε+ . . .

Since α is a scalar and Wιn = ιn (similarly, W(Wιn) = · · · = Wqιn = ιn
∀ q ≥ 0), this expression simplifies to:

y = (1− ρ)−1ιnα + ε+ ρWε+ ρ2W2ε+ . . .
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Introduction Spatial autoregressive data generating process

Spatial DGP

Let’s say that the rows of the weights matrix W represent first-order
neighbors.

Then by matrix multiplication, the rows of W2 would represent
second-order neighbors (neighbors of one’s neighbors), W3 third-order
neighbors, and so on.

But wait a minute... isn’t i is a second-order neighbor of itself?

This introduces simultaneous feedback into the model, where each
observation yi depends on the disturbances associated with both first-
and higher-order neighbors.

The influence of higher order neighbors declines when ρ is small (ρ
can be interpreted as a discount factor reflecting a decay of influence
for more distant observations)

...but we still have a mean and VCov structure for observations in the
vector y that depends in a complicated way on other observations.
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Introduction Spatial autoregressive data generating process

Spatial DGP

Simultaneous feedback is not necessarily a bad thing...

It can be useful if we’re modeling spatial spillover effects from
neighboring observations to an origin location i where the initial
impact occurred.

This approach effectively treats all observations as potential origins of
an impact.

But we also have to be very careful in how we treat spatial data, and
how we conceive of the feedback process with regard to time.

With cross-sectional data, observations are often taken to represent
an equilibrium outcome of the spatial process we are modeling.

But if spatial feedback is modeled as a dynamic process, the measured
spatial dependence may vary with the time scale of data collection.
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Introduction Spatial autoregressive data generating process

Further Reading

A.D. Cliff and J.K. Ord (1973), Spatial Autocorrelation (London:
Pion)

B.D. Ripley(1981), Spatial Statistics (New York: Wiley)

L. Anselin (1988), Spatial Econometrics: Methods and Models
(Dordrecht, The Netherlands: Kluwer Academic Publishers)

P.J. Diggle (2003), Statistical Analysis of Spatial Point Patterns
(London: Arnold)

R.S. Bivand, E.J. Pebesma and V. Gomez-Rubio (2008), Applied
Spatial Data Analysis with R (New York: Springer)

J. Le Sage and R.K. Pace (2009), Introduction to Spatial
Econometrics (CRC Press)
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Spatial Data and Basic Visualization

Outline

1 Introduction
Why use spatial methods?
The spatial autoregressive data generating process

2 Spatial Data and Basic Visualization in R

Points
Polygons
Grids

3 Spatial Autocorrelation

4 Spatial Weights

5 Point Processes

6 Geostatistics
7 Spatial Regression

Models for continuous dependent variables
Models for categorical dependent variables
Spatiotemporal models
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Spatial Data and Basic Visualization

Software options

Application Availability Learning Curve Key Functionality

ArcGIS License Medium Geoprocessing, visualization
GeoBUGS Free High Bayesian analysis

GeoDa Free Low ESDA, ML spatial regression
GRASS Free High Image processing, spatial modeling

R Free High Weights, spatial econometrics,
geostatistics

STARS Free Low Space-time analysis
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Spatial Data and Basic Visualization

Spatial Analysis in R

Task Packages

Data management sp, rgdal, maptools

Integration with other GIS rgdal, RArcInfo, SQLiteMap,

RgoogleMaps, spgrass6, RPyGeo,

R2WinBUGS, geonames

Point pattern analysis spatstat, splancs, spatialkernel

Geostatistics gstat, geoR, geoRglm, spBayes

Disease mapping DCluster, spgwr, glmmBUGS,

diseasemapping

Spatial regression spdep, spatcounts
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Spatial Data and Basic Visualization

Where to Find Spatial Data?

Coordinates and Basemaps:

Geographical Place Names http://www.geonames.org/

Global Administrative Areas http://gadm.org/country

Land Cover and Elevation http://eros.usgs.gov/#/Find_Data

Geo-referenced Data:

2000 U.S. Census Data
http://disasternets.calit2.uci.edu/census2000/

Natural Resources http://www.prio.no/CSCW/Datasets/

Geographical-and-Resource/

International Conflict Data http://www.acleddata.com/

A large number of links is also available at http://gis.harvard.edu/
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Spatial Data and Basic Visualization Points

Points

Points are the most basic form of spatial data

Points are pairs of coordinates (x , y), representing events, observation
posts, individuals, cities or any other discrete object defined in space.

Let’s take a look at the dataset crime, which is just a table of
geographic coordinates (decimal degrees) for crime locations in
Baltimore, MD.

head(crime)

ID LONG LAT

1 1 -76.65159 39.23941

2 2 -76.47434 39.35274

3 3 -76.51726 39.25874

4 4 -76.52607 39.40707

5 5 -76.51001 39.33571

6 6 -76.70375 39.26605

To work with these data in R, we will need to create a spatial

object from this table.

Yuri M. Zhukov (IQSS, Harvard University) Applied Spatial Statistics in R January 19, 2010 18 / 174



Spatial Data and Basic Visualization Points

Points

Create matrix of coordinates
sp point <- cbind(crime$LONG, crime$LAT)

colnames(sp point) <- c("LONG","LAT")

Define Projection: UTM Zone 17

proj <- CRS("+proj=utm +zone=17

+datum=WGS84")

Create spatial object

data.sp <- SpatialPointsDataFrame(

coords=sp point, data=crime,

proj4string=proj)

Plot the data
plot(data.sp, pch=16, cex=.5, axes=T)

-76.8 -76.6 -76.4

39
.3

39
.4

39
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39
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Figure: Baltimore Crime Locations
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Spatial Data and Basic Visualization Polygons

Polygons and Lines

Polygons can be thought of as sequences of connected points, where the
first point is the same as the last.

An open polygon, where the sequence of points does not result in a
closed shape with a defined area, is called a line.

In the R environment, line and polygon data are stored in objects of
classes SpatialPolygons and SpatialLines:

getClass("Polygon")

Class Polygon [package "sp"]

Name: labpt area hole ringDir coords

Class: numeric numeric logical integer matrix

getClass("SpatialPolygons")

Class SpatialPolygons [package "sp"]

Name: polygons plotOrder bbox proj4string

Class: list integer matrix CRS
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Spatial Data and Basic Visualization Polygons

Polygons and Lines

Let’s take a look at the election dataset.

summary(election)

Object of class SpatialPolygonsDataFrame

Coordinates:

min max

r1 -124.73142 -66.96985

r2 24.95597 49.37173
Is projected: TRUE

proj4string : [+proj=lcc+lon 0=90w +lat 1=20n +lat 2=60n]

The data are stored as a SpatialPolygonsDataFrame, which is a
subclass of SpatialPolygons containing a data.frame of attributes.

In this case, the polygons represent U.S. counties and attributes
include results from the 2004 Presidential Election.

names(election)

[1] "NAME" "STATE NAME" "STATE FIPS" "CNTY FIPS" "FIPS" "AREA" "FIPS num" "Bush"

[9] "Kerry" "County F" "Nader" "Total" "Bush pct" "Kerry pct" "Nader pct"
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Spatial Data and Basic Visualization Polygons

Polygons and Lines: Visualization

Let’s visualize the study region with plot(election).
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Spatial Data and Basic Visualization Polygons

Polygons and Lines: Visualization

For a categorical variable (win/lose), visualization is simple...
1 Create a vector of colors, where each county won by Bush is coded

"red" and every each county won by Kerry is "blue".
cols <- ifelse(election$Bush > election$Kerry,"red","blue")

2 Use the resulting color vector with the plot() command.
plot(election,col=cols,border=NA)

Winner of County Vote (2004)
Bush Kerry
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Spatial Data and Basic Visualization Polygons

Polygons and Lines: Visualization

With a continuous variable, the same logic applies. A relatively simple
approach is to create a custom color palette and use spplot().

br.palette <- colorRampPalette(c("blue", "red"), space = "rgb")

spplot(data, zcol="Bush pct", col.regions=br.palette(100))

Percent of County Vote for Bush (2004)

0

20

40

60

80
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Spatial Data and Basic Visualization Polygons

Polygons and Lines: Visualization

We can also create a color palette for custom classification intervals
with the classInt package.
Here is a comparison of six such palettes for the variable Bush pct, or
percentage of popular vote won by George W. Bush.
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Spatial Data and Basic Visualization Polygons

Polygons and Lines: Visualization

Here is a plot of county results using the fixed intervals:

Percent of County Vote for Bush (2004)
[0,10) [10,25) [25,50) [50,75) [75,100]
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Spatial Data and Basic Visualization Grids

Grids

A raster grid divides the study region into a set of identical,
regularly-spaced, discrete elements (pixels), each of which records the
value or presence/absence of a quantity of interest.

Rasters originated in image processing, and are used to record
properties varying continuously with space.
Common uses include remote sensing data, elevation models and
spatial prediction (weather forecasts, disease risk, etc.).

Take a look at the data structure of the volcano dataset, a grid of
elevation measures for the Maunga Whau Volcano in New Zealand:

head(volcano)[,1:6]

1 2 3 4 5 6

1 100.00 100.00 101.00 101.00 101.00 101.00

2 101.00 101.00 102.00 102.00 102.00 102.00

3 102.00 102.00 103.00 103.00 103.00 103.00

4 103.00 103.00 104.00 104.00 104.00 104.00

5 104.00 104.00 105.00 105.00 105.00 105.00

6 105.00 105.00 105.00 106.00 106.00 106.00
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Spatial Data and Basic Visualization Grids

Grids: Visualization

Grids can be visualized in two dimensions as contour plots, as images with
a color gradient, or both.

image(x=10*(1:nrow(z)), y=10*(1:ncol(z)), z=volcano,

col=terrain.colors(100), axes=F)

contour(x=10*(1:nrow(z)), y=10*(1:ncol(z)), z=volcano,

levels=seq(from=min(z), to=max(z), by=10),axes=F, add=T)
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Spatial Data and Basic Visualization Grids

Grids: Visualization

Grids can also be visualized in three dimensions with the persp()

command and a grid of palette colors (similar to vector of colors from
previous example).

x

y
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Spatial Data and Basic Visualization Grids

Examples in R

Switch to R tutorial script. Section 1.
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Spatial Autocorrelation

Outline

1 Introduction
Why use spatial methods?
The spatial autoregressive data generating process

2 Spatial Data and Basic Visualization in R
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Spatial Autocorrelation

What is Spatial Autocorrelation?

Spatial autocorrelation measures the degree to which a phenomenon
of interest is correlated to itself in space (Cliff and Ord 1973, 1981).

Tests of spatial autocorrelation examine whether the observed value
of a variable at one location is independent of values of that variable
at neighboring locations.

Positive spatial autocorrelation indicates that similar values appear
close to each other, or cluster, in space

Negative spatial autocorrelation indicates that neighboring values are
dissimilar or, equivalenty, that similar values are dispersed.

Null spatial autocorrelation indicates that the spatial pattern is
random.
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Spatial Autocorrelation

Global autocorrelation: Moran’s I

The Moran’s I coefficient calculates the ratio between the product of
the variable of interest and its spatial lag, with the product of the
variable of interest, adjusted for the spatial weights used.

I =
n∑n

i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij(yi − ȳ)(yj − ȳ)∑n

i=1(yi − ȳ)2

where yi is the value of a variable for the ith observation, ȳ is the
sample mean and wij is the spatial weight of the connection between i
and j .

Values range from –1 (perfect dispersion) to +1 (perfect correlation).
A zero value indicates a random spatial pattern.

Under the null hypothesis of no autocorrelation, E[I] = −1
n−1
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Spatial Autocorrelation

Global autocorrelation: Moran’s I

Calculating the variance of Moran’s I is a little more involved:

Var(I) =
ns1 − s2s3

(n − 1)(n − 2)(n − 3)(
∑

i

∑
j wij)2

s1 =(n2 − 3n + 3)
(1

2

∑
i

∑
j

(wij + wji )
2
)

− n
(∑

i

(
∑
j

wij +
∑
j

wji )
2
)

+ 3(
∑
i

∑
j

wij)
2

s2 =
n−1

∑
i (yi − x̄)4

(n−1
∑

i (yi − x̄)2)2

s3 =
1

2

∑
i

∑
j

(wij + wji )
2 − 2n

(1

2

∑
i

∑
j

(wij + wji )
2
)

+ 6
(∑

i

∑
j

wij

)2
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Spatial Autocorrelation

Global autocorrelation: Geary’s C

The Geary’s C uses the sum of squared differences between pairs of
data values as its measure of covariation.

C =
(n − 1)

∑
i

∑
j wij(yi − yj)

2

2(
∑

i

∑
j wij)

∑
i (yi − ȳ)2

where yi is the value of a variable for the ith observation, ȳ is the
sample mean and wij is the spatial weight of the connection between i
and j .

Values range from 0 (perfect correlation) to 2 (perfect dispersion). A
value of 1 indicates a random spatial pattern.
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Spatial Autocorrelation

Global autocorrelation: Join Counts

When the variable of interest is categorical, a join count analysis can
be used to assess the degree of clustering or dispersion.

A binary variable is mapped in two colors (Black & White), such that
a join, or edge, is classified as either WW (0-0), BB (1-1), or BW
(1-0).

Join count statistics can show

positive spatial autocorrelation (clustering) if the number of BW joins
is significantly lower than what we would expect by chance,
negative spatial autocorrelation (dispersion) if the number of BW joins
is significantly higher than what we would expect by chance,
null spatial autocorrelation (random pattern) if the number of BW
joins is approximately the same as what we would expect by chance.
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Spatial Autocorrelation

Global autocorrelation: Join Counts

By the naive definition of probability, if we have nB Black units and
nW = n − nB White units, the respective probabilities of observing
the two types of units are:

PB =
nB
n

PW =
n − nB

n
= 1− PB

The probabilities of BB and WW in two adjacent cells are

PBB = PBPB = P2
B PWW = (1− PB)(1− PB) = (1− PB)2

The probability of BW in two adjacent cells is

PBW = PB(1− PB) + (1− PB)PB = 2PB(1− PB)
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Spatial Autocorrelation

Global autocorrelation: Join Counts

The expected counts of each type of join are:

E[BB] =
1

2

∑
i

∑
j

wijP
2
B E[WW ] =

1

2

∑
i

∑
j

wij(1− PB)2

E[BW ] =
1

2

∑
i

∑
j

wij2PB(1− PB)

Where 1
2

∑
i

∑
j wij is the total number of joins (of any type) on a

map, assuming a binary connectivity matrix.
The observed counts are:

BB =
1

2

∑
i

∑
j

wijyiyj WW =
1

2

∑
i

∑
j

wij(1− yi )(1− yj)

BW =
1

2

∑
i

∑
j

wij(yi − yj)
2

where yi = 1 if unit i is Black and yi = 0 if White.
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Spatial Autocorrelation

Global autocorrelation: Join Counts

The variance of BW is calculated as

σ2
BW =E[BW 2]− E[BW ]2

=
1

4

(
2s2nB(n − nB)

n(n − 1)
+

(s3 − s1)nB(n − nB)

n(n − 1)

+
4(s2

1 + s2 − s3)nB(nB − 1)(n − nB)(n − nB − 1)

n(n − 1)(n − 2)(n − 3)

)
− E[BW ]2

s1 =
∑
i

∑
j

wij

s2 =
1

2

∑
i

∑
j

(wij − wji )
2

s3 =
∑
i

(
∑
j

wij +
∑
j

wji )
2
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Spatial Autocorrelation

Global autocorrelation: Join Counts

A test statistic for the BW join count is

Z(BW ) =
BW − E[BW ]√

σ2
BW

The join count statistic is assumed to be asymptotically normally
distributed under the null hypothesis of no spatial autocorrelation.

The test of significance is then provided by evaluating the BW
statistic as a standard deviate (Cliff and Ord, 1981).
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Spatial Autocorrelation

Local autocorrelation

Global tests for spatial autocorrelation are calculated from local
relationships between observed values at spatial units and their
neighbors.

It is possible to break these measures down into their components,
thus constructing local tests for spatial autocorrelation.

These tests can be used to detect

Clusters, or units with similar neighbors
Hotspots, or units with dissimilar neighbors
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Spatial Autocorrelation

Local autocorrelation

Below is a scatterplot of county vote for Bush and its spatial lag (average
vote received in neighboring counties). The Moran’s I coefficient is drawn
as the slope of the linear relationship between the two. The plot is
partitioned into four quadrants: low-low, low-high, high-low and high-high.
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Spatial Autocorrelation

Local autocorrelation: Local Moran’s I

A local Moran’s I coefficient for unit i can be constructed as one of
the n components which comprise the global test:

Ii =
(yi − ȳ)

∑n
j=1 wij(yj − ȳ)∑n

i=1(yi−ȳ)2

n

As with global statistics, we assume that the global mean ȳ is an
adequate representation of the variable of interest.

As before, local statistics can be tested for divergence from expected
values, under assumptions of normality.
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Spatial Autocorrelation

Local autocorrelation: Local Moran’s I
Below is a plot of Local Moran |z |-scores for the 2004 Presidential
Elections. Higher absolute values of z scores (red) indicate the presence of
“hot spots”, where the percentage of the vote received by President Bush
was significantly different from that in neighboring counties.
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Spatial Autocorrelation

Words of Caution

1 Autocorrelation tests are highly sensitive to spatial patterning in the
variable of interest from any source. But by assuming that the mean
model removes such systematic spatial patterning, spatial
autocorrelation tests do not always produce useful insights into the
DGP.

2 These tests are also highly sensitive to one’s choice of spatial weights.
Where the weights do not reflect the “true” structure of spatial
interaction, estimated autocorrelation (or lack thereof) may actually
stem from misspecification.
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Spatial Autocorrelation

Words of Caution

1 Autocorrelation tests are highly sensitive to spatial patterning in the
variable of interest from any source. But by assuming that the mean
model removes such systematic spatial patterning, spatial
autocorrelation tests do not always produce useful insights into the
DGP.

2 These tests are also highly sensitive to one’s choice of spatial weights.
Where the weights do not reflect the “true” structure of spatial
interaction, estimated autocorrelation (or lack thereof) may actually
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Spatial Autocorrelation

Words of Caution

Below is a correlogram of Moran’s I coefficients for Polity IV country
democracy scores in 2008. The x-axis represents distances between
country capitals, in kilometers. Here, democracy is significantly (p ≤ .05)
spatially autocorrelated only at distances of 3,000 km and below. So,
autocorrelation estimates will depend highly on choice of lag distance.
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Spatial Autocorrelation

Words of Caution

1 Autocorrelation tests are highly sensitive to spatial patterning in the
variable of interest from any source. But by assuming that the mean
model removes such systematic spatial patterning, spatial
autocorrelation tests do not always produce useful insights into the
DGP.

2 These tests are also highly sensitive to one’s choice of spatial weights.
Where the weights do not reflect the “true” structure of spatial
interaction, estimated autocorrelation (or lack thereof) may actually
stem from misspecification.

3 As originally designed, spatial autocorrelation tests assumed there are
no neighborless units in the study area. When this assumption is
violated, the size of n may be adjusted (reduced) to reflect the fact
that some units are effectively being ignored. Not doing so will
generally bias the absolute value for the autocorrelation statistic
upward and the variance downward.
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Spatial Autocorrelation

Examples in R

Switch to R tutorial script. Section 2.
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Spatial Weights

Outline

1 Introduction
Why use spatial methods?
The spatial autoregressive data generating process

2 Spatial Data and Basic Visualization in R

Points
Polygons
Grids

3 Spatial Autocorrelation

4 Spatial Weights

5 Point Processes

6 Geostatistics
7 Spatial Regression

Models for continuous dependent variables
Models for categorical dependent variables
Spatiotemporal models
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Spatial Weights

Choosing your neighbors?

Most spatial weights matrices W are based on some version of a
connectivity matrix C.

C is an n × n binary matrix, where i = {1, 2, . . . , n} and
j = {1, 2, . . . , n} are the units in the system (for example, countries in
the international system).

Entry cij = 1 if two units i 6= j are considered connected, and cij = 0
if they are not.

The tricky part is how the word “connected” is defined.
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Spatial Weights

Areal Contiguity I: Regular Grids

Rook’s case

Cells sharing a common edge
are considered contiguous

ij

j

j

j
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Spatial Weights

Areal Contiguity I: Regular Grids

Bishop’s case

Cells sharing a common vertex
are considered contiguous

i

j j

j j

Yuri M. Zhukov (IQSS, Harvard University) Applied Spatial Statistics in R January 19, 2010 52 / 174



Spatial Weights

Areal Contiguity I: Regular Grids

Queen’s case

Cells sharing a common edge
or common vertex are
considered contiguous

ij

j

j

j

j j

j j
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Spatial Weights

Areal Contiguity I: Regular Grids

Second-order neighbors:
(rook’s case)

Cells sharing a common edge
with first-order neighbors are
considered contiguous

kj

j

j

jk k

k

k

k k

k k
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Spatial Weights

Areal Contiguity I: Regular Grids

These conceptions of contiguity are useful when dealing with regular
square grids or rectangular lattices, where the spatial structure can be
easily summarized in elegant mathematical terms.

But when spatial units consist of irregularly-shaped polygons, as is
the case in most applied work (countries, census tracts, various
administrative units), this simple characterization of contiguity breaks
down...
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Spatial Weights

Areal Contiguity II: Polygons (WCONT )

Two polygons xi and xj are neighbors if they share a common boundary.

Advantage

Makes substantive sense

Disadvantage

Neighborless units

Lists with no-neighbor areas are problematic for the estimation of spatial
weights.

Should the weight representation of the empty set be a numeric zero
or a missing value?

This choice, and the resulting size of n, is highly consequential for
tests of spatial autocorrelation.
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Spatial Weights

Areal Contiguity II: Visualization of Connections

Figure: Contiguity neighbors with 500 km snap distance
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Spatial Weights

Areal Contiguity II: Polygons

While intuitive, polygon contiguity is not always appropriate or
feasible.

When the spatial units consist of points, such as cities or event
locations, aggregation into polygons is often undesirable due to the
Modifiable Areal Unit Problem (MAUP) (Openshaw and Taylor 1979,
1981).

Aggregation of point data is only meaningful if the underlying
phenomenon is homogeneous across space.
Otherwise, any aggregation scheme which does not account for
heterogeneity and structural instability will be misleading.
Furthermore, the level of aggregation affects the magnitude of various
measures of association, such as autocorrelation coefficients and
estimated regression parameters.
The MAUP is closely conceptually similar to the ecological fallacy
problem (King 1997).
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Spatial Weights

Areal Contiguity II: Polygons

Another approach is to
draw polygons around
each point by spatial
tessellation, as in Voronoi
or Dirichlet diagrams.

But here, notions of
boundary locations, length
and area are largely
artificial constructs,
determined by the
particular tessellation
algorithm used.
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Spatial Weights

Interpoint Distance Neighbors I: Minimum Distance
Neighbors (WMDN)

Neighbors of unit xi defined by interpoint distance:

Lower bound: 0

Upper bound: maxni=1

(
minn−1

j 6=i d(xi , xj)
)

Advantage

No neighborless units

Disadvantage

Inefficient for irregularly-spaced data

Potentially high number of politically irrelevant connections

Choice of points (centroids vs. capital cities) is potentially quite significant
and requires theoretical justification
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Spatial Weights

Interpoint Distance Neighbors I: Visualization of
Connections

Figure: Minimum distance neighbors (polygon centroids)
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Spatial Weights

Interpoint Distance Neighbors I: Visualization of
Connections

Figure: Minimum distance neighbors (capital cities)
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Spatial Weights

Interpoint Distance Neighbors II: k Nearest Neighbors
(WKNN)

Neighbors of unit xi defined by user-defined parameter k . xj is a neighbor
of xi if xj ∈ Nkxi , where Nkxi are the k nearest neighbors of xi .

Advantage

No neighborless units

Less noisy than WMDN

Disadvantage

Parameter selection may not reflect ‘true’ level of connectedness or
isolation
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Spatial Weights

Interpoint Distance Neighbors II: Visualization of
Connections

Figure: k = 4 Nearest Neighbors (polygon centroids)
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Spatial Weights

Interpoint Distance Neighbors II: Visualization of
Connections

Figure: k = 4 Nearest Neighbors (capital cities)
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Spatial Weights

Graph-Based Neighbors: Sphere of Influence Neighbors
(WSOI )

For each point x ∈ S = {x1, . . . , xn},
Let ri = mink 6=i d(xi , xk).

Let Ci be a circle of radius ri , centered at xi .

Points xi and xj are neighbors whenever Ci and Cj intersect in exactly two
points.

Advantage

No neighborless units

Less noisy than WMDN

Less arbitrary than WKNN

Disadvantage

Uses Euclidean, not Great Circle Distances
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Spatial Weights

Graph-Based Neighbors: Visualization of Connections

Figure: Sphere of Influence Neighbors (polygon centroids)
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Spatial Weights

Graph-Based Neighbors: Visualization of Connections

Figure: Sphere of Influence Neighbors (capital cities)
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Spatial Weights

Application: Democratic Diffusion

Changes of political regime modeled as a first-order Markov chain process
with the transition matrix

K =

[
Pr(yi ,t = 0|yi ,t−1 = 0) Pr(yi ,t = 1|yi ,t−1 = 0)
Pr(yi ,t = 0|yi ,t−1 = 1) Pr(yi ,t = 1|yi ,t−1 = 1)

]
where yi ,t = 1 if an (A)utocratic regime exists in country i at time t, and
yi ,t = 0 if the regime is (D)emocratic.
. . . in other words:

K =

[
Pr(D → D) Pr(D → A)
Pr(A→ D) Pr(A→ A)

]
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Spatial Weights

Estimation

Conditional transition probabilities are estimated by a probit link:

Pr(yi ,t = 1|yi ,t−1, xi ,t) = Φ[xTi ,tβ + yi ,t−1x
T
i ,tα]

Previous uses:

Takeshi Amemiya, Advanced Econometrics (Cambridge, MA: Harvard
University Press, 1985)

Adam Przeworski and Fernando Limongi, “Modernization: Theories
and Facts,” World Politics 49 (1997): 155-83.

Kristian S. Gleditsch and Michael D. Ward, “Diffusion and the
International Context of Democratization,” International Organization
60 (2006): 911-33.
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Spatial Weights

Equilibrium Effects of Democratic Transition

If a regime transition takes place in country i , what is the change in
predicted probability of a regime transition in country j (country i ’s
neighbor)?

QI = Pr(yj ,t |yi ,t = yi ,t−1)− Pr(yj ,t |yi ,t 6= yi ,t−1)

where yi ,t = 0 if country i is a democracy at time t and yi ,t = 1 if it is an
autocracy. All other covariates are held constant.

Illustrative cases

Iraq transitions from autocracy to democracy.

Russia transitions from democracy to autocracy.
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Spatial Weights

Iraq’s democratization and regional regime stability

Iraq
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Contiguity + 500 km
0 2,000 4,0001,000 km ´

Iraq transitions from autocracy to democracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Spatial Weights

Iraq’s democratization and regional regime stability

Iraq
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Minimum Distance
0 2,000 4,0001,000 km ´

Iraq transitions from autocracy to democracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Spatial Weights

Iraq’s democratization and regional regime stability

Iraq
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

k = 4 Nearest Neighbors
0 2,000 4,0001,000 km ´

Iraq transitions from autocracy to democracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Spatial Weights

Iraq’s democratization and regional regime stability

Iraq
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Sphere of Influence
0 2,000 4,0001,000 km ´

Iraq transitions from autocracy to democracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Spatial Weights

Russia’s autocratization and regional regime stability

Russia
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Contiguity + 500 km
0 2,000 4,000 6,0001,000 km ´

Russia transitions from democracy to autocracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Spatial Weights

Russia’s autocratization and regional regime stability

Russia
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Minimum Distance
0 2,000 4,000 6,0001,000 km ´

Russia transitions from democracy to autocracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Spatial Weights

Russia’s autocratization and regional regime stability

Russia
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

k = 4 Nearest Neighbors
0 2,000 4,000 6,0001,000 km ´

Russia transitions from democracy to autocracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Spatial Weights

Russia’s autocratization and regional regime stability

Russia
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Sphere of Influence
0 2,000 4,000 6,0001,000 km ´

Russia transitions from democracy to autocracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Spatial Weights

Network neighbors

The structure of spatial dependence can be non-geographic. Any
theoretically-relevant dyadic relationship can form the basis of connectivity.

Individual level: friendship, frequency of communication, citations,
kinship.

Organizational level: market competition, joint enterprises,
personnel exchanges.

International level: alliance relationship, trade flows, joint
organizational membership, diplomatic contacts, cultural exchanges,
migration flows.
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Spatial Weights

From Connections to Weights

Once a definition of connectivity is made, one must translate binary
indicators into weights, which will form the elements wij of matrix W.

A plethora of options exist: inverse distance (IDW), negative
exponentials of distance, length of shared boundary, relative area,
accessibility...

The resulting weights will often be asymmetric, unless the study
region is a regular lattice.
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Spatial Weights

From Connections to Weights

The rows of W are often row-standardized, so that
∑n

j=1 wij = 1

There is no mathematical or statistical requirement for this, but row
standardization facilitates interpretation of lagged variables as a
weighted average of neighboring values of some variable.

This is not always desirable, however.

Row-standardization also implies competition among neighbors: the
fewer the neighbors, the stronger their individual influence on i .

Further, when weights are based on some measure of distance decay
(ie: IDW), scaling the rows to sum to one results in a loss of that
interpretation.

Bottom line: the weights should bear a direct relation to one’s
theoretical conceptualization of the structure of dependence.
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Spatial Weights

Sparse vs. Dense Matrices

Sparsity carries a number of substantive and computational advantages:

Dense matrices are noisy and contain a potentially large number of
irrelevant connections.

Dense matrices will bias downward indirect effects of a change in
observation j (the individual weights of non-zero entries in
row-standardized weight matrices will be smaller).

Dense matrices can be computationally intensive to the point that
even simple matrix operations are infeasible.
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Spatial Weights

Sparse vs. Dense Matrices

Consider the following example with 2000 U.S. Census data:

Tracts

n = 65, 443
31.90 GB of storage required for dense matrix, .01 GB for sparse matrix.

Block Groups

n = 208, 790
324.80 GB of storage required for dense matrix, .03 GB for sparse matrix.

Blocks

n = 8, 205, 582
501,659.33 GB of storage required for dense matrix, 1.10 GB for sparse.

Here, dense and sparse matrices have n2 and 6/n nonzero elements,
respectively. For spatially random data on a plane, each unit will have an
average of 6 contiguity neighbors (LeSage and Pace 2009).
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Spatial Weights

Ordering of Weights Matrix

Ordering of rows and columns matters greatly for computation times.

Consider an n × n permutation matrix P, which has exactly one entry
1 in each row and each column and 0’s elsewhere. Each permutation
matrix can produce a reordered weights matrix WP , by the operation
WP = PWP′.

Note that P−1 = P′, |P| = 1 and
|P(In − ρW)P′| = |P||In − ρW||P′| = |In − ρW| = |In − ρPWP′|
Thanks to these properties, log-determinant calculation and other
matrix operations will not be affected by the reordering of W.

But computation times for these operations are affected.
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Spatial Weights

Ordering of Weights Matrix

Efficiency is increased if ordering is geographic (north-south or east-west)

This ordering concentrates nonzero elements around the diagonal,
which reduces the bandwidth of a matrix (max |i − j | for nonzero
elements).

For a sample of 62,226 U.S. Census Tracts, calculation of a single
log-determinant requires over 12 GB of memory for a randomly
ordered weights matrix, making calculation infeasible on most
machines.

The same operation takes less than a minute for a
geographically-ordered matrix (LeSage and Pace 2009).

Yuri M. Zhukov (IQSS, Harvard University) Applied Spatial Statistics in R January 19, 2010 86 / 174



Spatial Weights

Examples in R

Switch to R tutorial script. Section 3.
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Outline
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Why use spatial methods?
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Point Processes

Point Pattern Analysis: Aerial Bombardment

During World War II, Germany launched 1,358 V-2 Rockets at
London.

The V-2’s speed and trajectory made it invulnerable to anti-aircraft
guns and fighters.

But its guidance systems were thought to be too primitive to hit
specific targets.

After the strikes began in 1944, bomb damage maps were interpreted
by some analysts as showing that impact sites were clustered.

This evidence appeared to contradict existing intelligence on the V-2
program.

If the rocket strikes were spatially clustered, the guidance systems
must have been more advanced than previously thought.
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Point Processes

Point Pattern Analysis: Aerial Bombardment

Figure: Distribution of V-2 Rocket Strikes on Central London, 1944

Yuri M. Zhukov (IQSS, Harvard University) Applied Spatial Statistics in R January 19, 2010 90 / 174



Point Processes

Point Pattern Analysis: Aerial Bombardment

R.D. Clarke (1946) decided to apply a statistical test to assess
whether any support could be found for the clustering hypothesis.

He selected an area of 144 km2 in south London, which he divided
into 576 squares of 1/4 km2.

For each square, Clark recorded the total number of observed bomb
hits. There were 537 total in the study area.

He then recorded the number of squares with k = 1, 2, 3, . . . hits.

The expected number of squares with k hits was derived from the

Poisson distribution
∑n

k=1
e−λλk

k! , with λ = 537
576 and n = 576.
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Point Processes

Point Pattern Analysis: Aerial Bombardment

No. of bombs per square Expected Observed

1 226.74 229
2 211.39 211
3 98.54 93
4 7.14 7

5+ 1.57 1
χ2 = 1.17, p = 0.88

It is clear from the cross-tabulation that the distribution of V-2 hits
conforms quite closely to the Poisson distribution.

The occurrence of clustering would have been reflected in an excess
number of squares with either a high number of bombs or none at all,
and fewer squares in the intermediate classes.

The closeness of fit suggested that V-2 impact sites were random,
rather than clustered.
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Point Processes

Point Pattern Processes

Point patterns have first- and second- order properties:

1 First-order properties measure the distribution of events in a study
region: intensity and spatial density.

2 Second-order properties measure the tendency of events to appear
clustered, independently, or regularly-spaced.
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Point Processes

Point Pattern Processes: Complete Spatial Randomness

The most basic test which can be performed is that of
Complete Spatial Randomness (CSR). Under CSR, events are
distributed independently and uniformly over a study area.

A point process which is CSR point process is formally defined as a
homogeneous Poisson process (HPP).

Under HPP, the location of one point in space does not affect the
probabilities of other points’ appearing nearby. The intensity of the
point process in area A is a constant λ(y) = λ > 0, ∀y ∈ A.

A generalization of HPP which allows for non-constant intensity λ(y)
is called an inhomogeneous Poisson process (IPP).
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Point Processes

Point Pattern Processes: Complete Spatial Randomness

Let’s explore conformity to CSR among three point patterns: (1) real
data on crime locations in Baltimore, (2) points drawn from uniform
distribution over the same study area, (3) regularly-spaced point
pattern.
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Point Processes

Point Pattern Processes: G Function

The G Function measures the distribution of distances from an
arbitrary event to its nearest neighbors.

Ĝ(r) =

∑n
i=1 Ii
n

Ii =

{
1 if di ∈ {di : di ≤ r , ∀i}
0 otherwise

where di = minj{dij ,∀j 6= i ∈ S}, i = 1, . . . , n.

So, the G function represents the number of elements in the set of
distances up to some threshold r , normalized by the total number of
points n in point pattern S .

Under CSR, the value of the G function becomes:

G(r) =1− eλπr
2

where λ is the mean number of events per unit (intensity).
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Point Processes

Point Pattern Processes: G Function

The comparability of a point process with CSR can be assessed by
plotting the empirical function Ĝ(r) against the theoretical
expectation G(r).
For a clustered pattern, observed locations should be closer to each
other than expected under CSR. A regular pattern should have higher
nearest-neighbor distances than expected under CSR.
This is shown below for the Baltimore crime locations dataset.
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Point Processes

Point Pattern Processes: F Function

The F Function measures the distribution of all distances from an
arbitrary point k in the plane to the nearest observed event j .

F̂(r) =

∑m
k=1 Ik
m

Ik =

{
1 if dk ∈ {dk : dk ≤ r , ∀k}
0 otherwise

where dk = minj{dkj , ∀j ∈ S}, k = 1, . . . ,m, j = 1, . . . , n.

Under CSR, the expected value is also

F(r) =1− eλπr
2
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Point Processes

Point Pattern Processes: F Function

As before, we can plot the empirical function F̂(r) against its
theoretical expectation F(r).
For a clustered pattern, observed locations j should be farther away
from random points k than expected under CSR. In a regular pattern,
random locations should be closer to observed points.
This is again shown below for the Baltimore crime locations dataset.
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Point Processes

Point Pattern Processes: Intensity

For an HPP point process, intensity is a constant λ(x) = λ = n
|A| ,

where n is the number of points observed in region A, and |A| is the
area of region A.

For an IPP point process, intensity is non-constant and can be
estimated non-parametrically with kernel smoothing (Diggle 1985,
Berman and Diggle 1989, Bivand et. al. 2008).
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Point Processes

Point Pattern Processes: Kernel Density

The kernel density estimator is:

λ̂(x) =
1

h2

n∑
i=1

κ
(
||x−xi ||

h

)
q(||x ||)

where xi ∈ {x1, . . . , xn is an observed point, h is the bandwidth,
q(||x ||) is a border correction to compensate for observations missing
due to edge effects, and κ(u) is a bivariate and symmetrical kernel
function.

R currently implements a two-dimensional quartic kernel function:

κ(u) =

{
3
π (1− ||u||2)2 if u ∈ (−1, 1)
0 otherwise

where ||u||2 = u2
1 + u2

2 is the squared norm of point u = (u1, u2)
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Point Processes

Point Pattern Processes: Kernel Density

There is no general rule for selecting the bandwidth h, which governs
the level of smoothing.
Small bandwidth → spiky map; large bandwidth → smooth map.
Berman and Diggle (1989) propose a criterion based on minimization
of mean square error (MSE) of the kernel smoothing estimator.
The plot below implements this approach for the Baltimore crime
dataset. The “optimal” bandwidth here is 0.01.
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Point Processes

Point Pattern Processes: Kernel Density

The plot below shows kernel density estimates for the Baltimore crime
locations at different values of the bandwidth h.

Lighter values indicate greater intensity of the point process.

Clearly, different bandwidths tell very different stories about the
spatial intensity of crime in Baltimore...
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Point Processes

Examples in R

Switch to R tutorial script. Section 4.
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Geostatistics

Outline

1 Introduction
Why use spatial methods?
The spatial autoregressive data generating process

2 Spatial Data and Basic Visualization in R

Points
Polygons
Grids

3 Spatial Autocorrelation

4 Spatial Weights

5 Point Processes

6 Geostatistics
7 Spatial Regression

Models for continuous dependent variables
Models for categorical dependent variables
Spatiotemporal models

Yuri M. Zhukov (IQSS, Harvard University) Applied Spatial Statistics in R January 19, 2010 105 / 174



Geostatistics

Geostatistics

What if the pattern of point locations is not of primary interest? You may
wish to...

determine where new data should be collected,

identify which observations are spatial outliers,

perform spatial prediction,

interpolate missing data from nearby observed locations,

estimate local averages of spatially autocorrelated variables.

These problems are the domain of a subfield called geostatistics.
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Geostatistics

Geostatistics

Let’s take a look at some data on U.S. Air Strikes in Laos during the
Vietnam War.
The variable we are interested is LOAD LBS, the payload of each bomb
dropped.
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Geostatistics

Geostatistics: IDW Interpolation

Spatial interpolation is the prediction of values of attributes at
unsampled locations x0 from existing measurements at xi .
This procedure converts a sample of point observations into an
alternative representation, such as a contour map or grid.
One approach to interpolation is to use a locally-weighted average of
nearby values.
Inverse-distance weighted (IDW) interpolation computes one such
weighted average:

Ẑ (x0) =
n∑

i=1

wi0Z (xi )

where weights wij are determined according to the distance between
points xi and xj , and scaled by parameter k .

wij =
1

dk
ij
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Geostatistics

Geostatistics: IDW Interpolation

Predicted values and variance for Laos bombing data are shown below.

Values of k > 1 reduce the relative impact of distant points and
produce a peaky map.

Values of k < 1 increase the impact of distant points and produce a
smooth map.
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Geostatistics

Geostatistics: Variogram

In geostatistics, spatial autocorrelation has traditionally been
modelled by a variogram, which describes the degree to which nearby
locations have similar values.

A variogram cloud is a scatterplot of data pairs, in which the
semivariance is plotted against interpoint distance.

The semivariance γ(d) is formally defined as the squared difference in
height between locations:

γ̂(d) =
1

2n(d)

∑
dij=d

(Z (xi )− Z (xj))2

where n(d) is the number of point pairs separated by distance d , and
Z (xi ) is the value of a variable at location xi .

Yuri M. Zhukov (IQSS, Harvard University) Applied Spatial Statistics in R January 19, 2010 110 / 174



Geostatistics

Geostatistics: Variogram

Below is the variogram cloud for Laos bomb load (natural log).

Upper left corner: point pairs are close together, but have
very different values.

Lower left corner: close together, similar values.

Upper right corner: far apart, different values.

Lower right corner: far apart, similar values.
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Geostatistics

Geostatistics: Variogram

A variogram can be used to identify outliers...

selected point pairs

LONG

LA
T

18.0

18.5

19.0

102.5 103.0 103.5 104.0 104.5 105.0
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Geostatistics

Geostatistics: Variogram

To test the null hypothesis that an increase in semivariance with distance
is due to chance, we can use simulation to generate 100 spatially random
datasets and check whether the sample variogram falls within the range of
the random variograms. As shown below, the CSR hypothesis seems
unlikely for the Laos bombing data.
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Geostatistics

Geostatistics: Variogram

The variogram can be used for spatial prediction.
This can be done by fitting a parametric model to the variogram.
In the Laos example below, an exponential model was used.
The shape of the curve indicates that at small separation distances,
the variance in z is small. After a certain level of separation (.5
degrees), the variance in z values becomes somewhat random and the
model flattens out to a value corresponding to the average variance.
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Geostatistics

Geostatistics: Ordinary Kriging

Kriging is used to interpolate a value Z (x0) of a random field Z (x) at
unobserved location x0, using data from observed location xi .

Allows variance to be non-constant, dependent on distance between
points as modeled by the variogram γ(d).

The kriging estimator is given by

Ẑ (x0) =
n∑

i=1

wi (x0)Z (xi )

where wi (x0), i = 1, . . . , n is a spatial weight.

Kriging is very similar to IDW interpolation, expect that the weights
used in kriging are based on the model variogram, rather than an
arbitrary function of distance.
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Geostatistics

Geostatistics: Ordinary Kriging

To interpolate at a point x0 based on points x1, . . . , xn, the weights
w1, . . .wn must be found. This can be done by solving the system of
linear equations:

γ(d11) γ(d12) · · · γ(d1n) 1
...

...
. . .

...
...

γ(dn1) γ(dn2) · · · γ(dnn) 1
1 1 · · · 1 0

 =


w1
...
wn

λ



γ(d10)

...
γ(dn0)

1


where γ(dij) is the semivariance for the distance between points xi
and xj , and λ is the trend parameter.

Ordinary kriging assumes an unknown constant trend: λ(x) = λ.
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Geostatistics

Geostatistics: Ordinary Kriging

Once weights are estimated, interpolation by ordinary kriging is given by:

Ẑ (x0) =

w1
...
wn


′Z (x1)

...
Z (xn)


The ordinary kriging error is given by:

var
(
Ẑ (x0)− Z (x0)

)
=


w1
...
wn

λ


′

γ(d10)
...

γ(dn0)
1
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Geostatistics

Geostatistics: Ordinary Kriging

Predicted values and variance for ordinary kriging is shown below for
the Laos bombing data.

Ordinary Kriging,  Bomb Load (log)
Predictions Variance
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Geostatistics

Examples in R

Switch to R tutorial script. Section 5.
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Spatial Regression

Outline

1 Introduction
Why use spatial methods?
The spatial autoregressive data generating process

2 Spatial Data and Basic Visualization in R

Points
Polygons
Grids

3 Spatial Autocorrelation

4 Spatial Weights

5 Point Processes

6 Geostatistics
7 Spatial Regression

Models for continuous dependent variables
Models for categorical dependent variables
Spatiotemporal models
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Spatial Regression Continuous DV

Inefficiency of OLS estimators

In a time-series context, the OLS estimator remains consistent even
when a lagged dependent variable is present, as long as the error term
does not show serial correlation.

While the estimator may be biased in small samples, it can still be
used for asymptotic inference.

In a spatial context, this rule does not hold, irrespective of the
properties of the error term.

Consider the first-order SAR model (covariates omitted):

y = ρWy + ε

The OLS estimate for ρ would be:

ρ̂ =
(

(Wy)′(Wy)
)−1

(Wy)′y = ρ+
(

(Wy)′(Wy)
)−1

(Wy)′ε

Similar to time series, the second term does not equal zero and the
estimator will be biased.
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Spatial Regression Continuous DV

Inefficiency of OLS estimators

Asymptotically, the OLS estimator will be consistent if two conditions
are met:

plim N−1(Wy)′(Wy) = Q a finite and nonsingular matrix

plim N−1(Wy)′ε = 0

While the first condition can be satisfied with proper constraints on ρ
and the structure of W, the second does not hold in the spatial case:

plim N−1(Wy)′ε = plim N−1ε′(W)(In − ρW)−1ε 6= 0

The presence of W in the expression results in a quadratic form in the
error term.

Unless ρ = 0, the plim will not converge to zero.
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Spatial Regression Continuous DV

Properties of Maximum Likelihood Estimators

By contrast with OLS, maximum likelihood estimators (MLE) have
attractive asymptotic properties, which apply in the presence of spatially
lagged terms. ML estimates will exhibit consistency, efficiency and
asymptotic normality if the following conditions are met:

A log-likelihood for parameters of interest must exist (i.e.:
non-degenerate lnL)

The log-likelihood must be continuously differentiable

Boundedness of various partial derivatives

The existence, positive definiteness and/or non-singularity of
covariance matrices

Finiteness of various quadratic forms

The various conditions are typically met when the structure of spatial
interaction, expressed jointly by the autoregressive coefficient and the
weights matrix, is nonexplosive (Anselin 1988).

Yuri M. Zhukov (IQSS, Harvard University) Applied Spatial Statistics in R January 19, 2010 123 / 174



Spatial Regression Continuous DV

Two-stage techniques

Instrumental variable estimation has similar asymptotic properties to MLE,
but can be easier to implement numerically.

Recall that the failure of OLS in models with spatially lagged DV’s is
due the correlation between the spatial variable and the error term
(plim N−1(Wy)′ε 6= 0)

This endogeneity issue can be addressed with two-stage methods
based on the existence of a set of instruments Q, which are strongly
correlated with the original variables Z = [Wy X], but
asymptotically uncorrelated with the error term.
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Spatial Regression Continuous DV

Two-stage techniques

Where Q is of the same column dimension as Z, the instrumental
variable estimate θIV is

θIV = [Q′Z]−1Q′y

In the general case where the dimension of Q is larger than Z, the
problem can be formulated as a minimization of the quadratic
distance from zero:

minΦ(θ) = (y − Zθ)′Q(Q′Q)−1Q′(y − Zθ)

The solution to this optimization problem is the IV estimator θIV

θIV = [Z′PQZ]−1Z′PQy

with PQ = Q[Q′Q]−1Q′ an idempotent projection matrix
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Spatial Regression Continuous DV

Two-stage techniques

PQZ can be seen to correspond to a matrix of predicted values from
regressions of each variable in Z on the instruments in Q

PQZ = Q{[Q′Q]−1Q′Z}

where the bracketed term is the OLS estimate for a regression of Z on
Q.

Let Zp be the predicted values of Z. Then the IV estimator can also
be expressed as

θIV = [Z′pZ]−1Z′py

which is the 2SLS estimator.
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Spatial Regression Continuous DV

Two-stage techniques

Instrumental variable approaches are highly sensitive to the choice of
instruments. Several options exist:

Spatially lagged predicted values from a regression of y on non-spatial
regressors (Wy∗) (Anselin 1980).

Spatial lags of exogenous variables (WX) (Anselin 1980, Kelejian and
Robinson 1993).

In a spatiotemporal context, a time-wise lagged dependent variable or
its spatial lag (Wyt−1) (Haining 1978).
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Spatial Regression Continuous DV

Spatial autoregressive model (SAR): Likelihood function

The full log-likelihood has the form:

lnL = −n

2
ln(πσ2) + ln|In − ρW| −

e ′e

2σ2

e = (In − ρW)y − Xβ

It follows that the maximization of the likelihood is equivalent to a
minimization of squared errors, corrected by the determinants from
the Jacobian (Anselin 1988).

This correction – and particularly the spatial term in |In − ρW| – will
keep the least squares estimate from being equivalent to MLE.
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Spatial Regression Continuous DV

Spatial autoregressive model (SAR): Likelihood function

The most demanding part of the functions called to optimize the
spatial autoregressive coefficient is the calculation of the Jacobian,
the log-determinant of the n × n matrix |In − ρW|
One option is to express the determinant as a function of the
eigenvalues ω of W (Ord 1975):

ln|In − ρW| = ln
n∏

i=1

(1− ρωi ) =
n∑

i=1

ln(1− ρωi )

An alternative approach is brute-force calculation of the determinant
and inverse matrix at each iteration.
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Spatial Regression Continuous DV

OLS vs. SAR

Consider the following linear regression of percent of county vote won by
President Bush (y) on per capita income in the county (X): y = Xβ + ε.

OLS

(Intercept) 63.4340
(0.8893)***

Per capita income -0.0002
(0.0000)***

AIC 24,666
N 3,111

Moran’s I Residuals 0.550
Moran’s I Std. Deviate 51.138***
*p ≤ .05, **p ≤ .01, ***p ≤ .001

The Moran’s I statistic shows a significant amount of spatial
autocorrelation in the residuals.

Yuri M. Zhukov (IQSS, Harvard University) Applied Spatial Statistics in R January 19, 2010 130 / 174



Spatial Regression Continuous DV

OLS Residuals

Below is a map of residuals from a linear regression of percent of country
vote received by Bush on per capita income.

Residuals from OLS Model
[-50,-25) [-25,-5) [-5,5) [5,25) [25,50]
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Spatial Regression Continuous DV

OLS vs. SAR

And the same model estimated by SAR: y = ρWy + Xβ + ε.

OLS SAR

(Intercept) 63.4340 14.073
(0.8893)*** (1.0572)***

Per capita income -0.0002 5.46e-05
(0.0000)*** (3.38e-05)

ρ 0.7510
(0.0143)***

AIC 24,666 22,860
N 3,111 3,111

Moran’s I Residuals 0.550 -0.0410
Moran’s I Std. Deviate 51.138*** -3.7788

*p ≤ .05, **p ≤ .01, ***p ≤ .001

The ρ coefficient is positive and highly significant, indicating strong spatial
autocorrelation in the dependent variable. The Moran’s I statistic
indicates that the residuals are no longer spatially clustered.
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Spatial Regression Continuous DV

SAR Residuals

Below is a map of residuals from the SAR model.

Residuals from SAR Model
[-50,-25) [-25,-5) [-5,5) [5,25) [25,50]
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Spatial Regression Continuous DV

SAR Equilibrium Effects

Because of the dependence structure of the SAR model, coefficient
estimates do not have the same interpretation as in OLS.

The β parameter reflects the short-run direct impact of xi on yi .
However, we also need to account for the indirect impact of xi on yi ,
from the influence yi exerts on its neighbors yj , which in turn feeds
back into yi .

The equilibrium effect of a change in xi on yi can be calculated as:

E[∆y ] = (In − ρW)−1∆X

where ∆X is a matrix of changes to the covariates, and ∆y is the
associated change in the dependent variable.

Since each unit will have a different set of connectivities to its
neighbors, the impact of a hypothetical change in xi will depend on
which unit is being changed.
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Spatial Regression Continuous DV

SAR Equilibrium Effects

Below are the equilibrium effects (increase in percent of county vote
for Bush) associated with a doubling of per capita income in Bronx
County.

County OLS SAR

Currituck 0 4.81
Plymouth 0 4.47

Bronx -2.86 4.31
Hunterdon 0 3.89

Lebanon 0 3.80
Mercer 0 3.70

Dare 0 3.52
Dauphin 0 3.42

Edgecombe 0 3.37
Barnstable 0 3.36
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Spatial Regression Continuous DV

Spatially lagged error

Use of the spatial error model may be motivated by omitted variable
bias.

Suppose that y is explained entirely by two explanatory variables x
and z , where x , z ∼ N(0, In) and are independent.

y = xβ + zθ

If z is not observed, the vector zθ is nested into the error term ε.

y = xβ + ε

Examples of latent variable z : culture, social capital, neighborhood
prestige.
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Spatial Regression Continuous DV

Spatially lagged error

But we may expect the latent variable z to follow a spatial
autoregressive process.

z = λWz + r

z = (In − λW)−1r

where r ∼ N(0, σ2In) is a vector of disturbances, W is the spatial
weights matrix, and λ is a scalar parameter.

Substituting this back into the previous equation, we have the DGP
for the spatial error model (SEM) :

y = Xβ + zθ

y = Xβ + (In − λW)−1u

where u = θr
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Spatial Regression Continuous DV

Spatially lagged error

In addition to omitted variable bias, another motivation for the spatial
error model might be spatial heterogeneity.

Suppose we have a panel data set, with multiple observations for each
unit.

If we want our model to incorporate individual effects, we can include
an n × 1 vector a of individual intercepts for each unit:

y = a + Xβ

But in a cross-sectional setting, with one observation per unit, this
approach is not feasible, since we’ll have more parameters than
observations.
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Spatial Regression Continuous DV

Spatially lagged error

Instead, we can treat a as a vector of spatial random effects.

We assume that the vector of intercepts a follows a spatial
autoregressive process:

a = λWa + ε

a = (In − λW)−1ε

where ε ∼ N(0, σ2In) is a vector of disturbances

Substituting this into the previous model yields the DGP of the SEM:

y = Xβ + a

y = Xβ + (In − λW)−1ε
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Spatial Regression Continuous DV

Spatially lagged error: Likelihood function

The full log-likelihood has the form:

lnL = −n

2
ln(πσ2) + ln|In − λW| −

e ′e

2σ2

e = (In − λW)(y − Xβ)
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Spatial Regression Continuous DV

Spatially lagged error: Interpretation of coefficients

The SEM is essentially a generalized normal linear model with
spatially autocorrelated disturbances.

Assuming independence between X and the error term, least squares
estimates for β are not efficient, but still unbiased.

Because the SEM does not involve spatial lags of the dependent
variable, estimated β parameters can be interpreted as partial
derivatives:

βk =
δyi
δxjk

∀ i , k

where i indexes the observations and k indexes the explanatory
variables.
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Spatial Regression Continuous DV

SEM Estimates

Let’s run the election model from before: y = Xβ + λWu + ε.

OLS SAR SEM

(Intercept) 63.434 14.073 58.3470
(0.8893)*** (1.0572)*** (.9910)***

Per capita income -0.0002 5.46e-05 8.02e-05
(0.0000)*** (3.38e-05) (4.17e-05)’

ρ 0.7510
(0.0143)***

λ 0.7612
(0.01422)***

AIC 24,666 22,860 22,864
N 3,111 3,111 3,111

Moran’s I Residuals 0.550 -0.0410 -0.0511
Moran’s I Std. Deviate 51.138*** -3.7788 -4.7192

’p ≤ .1, *p ≤ .05, **p ≤ .01, ***p ≤ .001

The λ coefficient is positive and highly significant, indicating strong spatial
dependence in the errors.
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Spatial Regression Continuous DV

SEM Residuals

Below is a map of residuals from the SEM model.

Residuals from SEM Model
[-50,-25) [-25,-5) [-5,5) [5,25) [25,50]
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Spatial Regression Continuous DV

Spatial Durbin Model

Like the SEM, the Spatial Durbin Model can be motivated by concern
over omitted variables.

Recall the DGP for the SEM:

y = Xβ + (In − λW)−1u

Now suppose that X and u are correlated.

One way to account for this correlation would be to conceive of u as a
linear combination of X and an error term v that is independent of X.

u = Xγ + v

v ∼ N(0, σ2In)

where the scalar parameter γ and σ2 govern the strength of the
relationship between X and z = (In − λW)−1
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Spatial Regression Continuous DV

Spatial Durbin Model

Substituting this expression for u, we have the following DGP:

y = Xβ + (In − λW)−1(γX + v)

y = Xβ + (In − λW)−1γX + (In − λW)−1v

(In − λW)y = (In − λW)Xβ + γX + v

y = λWy + X(β + γ) + WX(−λβ) + v

This is the Spatial Durbin Model (SDM), which includes a spatial lag
of the dependent variable y, as well as the explanatory variables X.
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Spatial Durbin Model

The Spatial Durbin Model can also be motivated by concern over
spatial heterogeneity.
Recall the vector of intercepts a:

a = (In − λW)−1ε

Now suppose that X and ε are correlated.
As before, let’s restate ε as a linear combination of X and random
noise v.

a = Xγ + v

Substituting this back into the SEM yields the same expression of
SDM as before:

y = λWy + X(β + γ) + WX(−λβ) + v
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Spatial Regression Continuous DV

Spatial Durbin Model: Likelihood function

Let’s restate the SDM as follows:

y = ρWy + αιn + Xβ + WXθ + ε

The log-likelihood has a similar form to the SEM:

lnL = −n

2
ln(πσ2) + ln|In − ρW| −

e ′e

2σ2

e = y − ρWy − Zδ

where Z = [ιn X WX], δ = [α β θ], and ρ is bounded by
(min(ω)−1,max(ω)−1), where ω is an n × 1 vector of eigenvalues of
W.
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SDM Estimates

Let’s try running the SDM: y = ρWy + αιn + Xβ + WXθ + ε

OLS SAR SEM SDM

(Intercept) 63.434 14.073 58.3470 16.848
(0.8893)*** (1.0572)*** (.9910)*** (1.2588)***

Per capita income -0.0002 5.46e-05 8.02e-05 0.0002
(0.0000)*** (3.38e-05) (4.17e-05)’ (0.0000)***

Lagged Bush vote (ρ) 0.7510 0.7501
(0.0143)*** (0.0144)***

Lagged error (λ) 0.7612
(0.01422)***

Lagged income (θ) -0.0003
(0.0001)***

AIC 24,666 22,860 22,864 22,843
N 3,111 3,111 3,111 3,111

Moran’s I Residuals 0.550 -0.0410 -0.0511 -0.0454
Moran’s I Std. Deviate 51.138*** -3.7788 -4.7192 -4.1894

’p ≤ .1, *p ≤ .05, **p ≤ .01, ***p ≤ .001

The SDM results in a slightly better fit...
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SDM Residuals

Below is a map of residuals from the SDM model.

Residuals from SDM Model
[-50,-25) [-25,-5) [-5,5) [5,25) [25,50]
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Extensions: Spatial Autocorrelation Model (SAC)

The SAC model contains spatial dependence in both the dependent
variable and the errors, with (potentially) two different weights
matrices.

y = ρW1y + Xβ + λW2u + ε

y = (In − ρW1)−1Xβ + (In − ρW1)−1(In − λW2)−1ε

ε ∼ N(0, σ2In)

The log-likelihood has the form:

lnL = −n

2
ln(πσ2) + ln|In − ρW1|+ ln|In − λW2| −

e ′e

2σ2

e = (In − λW2)
(
(In − ρW1)y − Xβ)

)
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Extensions: Spatial Autoregressive Moving Average Model
(SARMA)

Like the SAC, the SARMA model also contains spatial dependence in
the dependent variable and the errors.

y = ιnα + ρW1y + Xβ + (In − θW2)ε

y = (In − ρW1)−1(Xβ + ιnα) + (In − ρW1)−1(In − θW2)ε

ε ∼ N(0, σ2In)

The main distinction between the SAC and SARMA is the series
representation of the inverse (In − θW2).

As a result, the SAC places more emphasis on higher order neighbors.
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Extensions: Spatial Durbin Error Model (SDEM)

The SDEM model contains spatial dependence in both the
explanatory variables and the errors.

y = ιnα + Xβ + WXγ + (In − ρW)−1ε

ε ∼ N(0, σ2In)

Direct impacts correspond to the β parameters; indirect impacts
correspond to the γ parameters

The model can be generalized to incorporate two weights matrices
without affecting interpretation of parameters:

y = ιnα + Xβ + W1Xγ + (In − ρW2)−1ε
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Examples in R

Switch to R tutorial script. Section 6.a.
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Geographically Weighted Regression (GWR)

A key assumption that we have made in the models examined thus far
is that the structure of the model remains constant over the study
area (no local variations in the parameter estimates).

If we are interested in accounting for potential spatial heterogeneity
in parameter estimates, we can use a
Geographically Weighted Regression (GWR) model (Fotheringham et
al., 2002).

GWR permits the parameter estimates to vary locally, similar to a
parameter drift for a time series model.

GWR has been used primarily for exploratory data analysis, rather
than hypothesis testing.
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Geographically Weighted Regression (GWR)

GWR rewrites the linear model in a slightly different form:

yi =Xβi + ε

where i is the location at which the local parameters are to be
estimated.
Parameter estimates are solved using a weighting scheme:

βi =(X′WiX)−1X′Wiy

where the weight wij for the j observation is calculated with a
Gaussian function.

wij =e

(
−dij
h

)2

where di ,j is the Euclidean distance between the location of
observation i and location j , and h is the bandwidth.
Bandwidth may be user-defined or selected by minimization of root
mean square prediction error.
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Spatial Regression Continuous DV

GWR Estimates

Let’s try running the same election model as before with GWR:

Geographically Weighted Regression
Global Min Mean Max S.E.

(Intercept) 63.4340 -26.02 59.95 185.36 (20.5262)
Per capita income -0.0002 -0.0061 0.0001 0.0061 (0.0010)

Bandwidth 0.6649
N 3,111

Moran’s I Residuals 0.0796
Moran’s I Std. Deviate 7.4239***

’p ≤ .1, *p ≤ .05, **p ≤ .01, ***p ≤ .001
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Spatial Regression Continuous DV

GWR Local Coefficient Estimates

Below is a map of local coefficients. The relationship between income and
support for Bush is negative in red areas, and positive in green areas.

Local Coefficient Estimates (per capita income)
[-0.005,-0.003)
[-0.003,-0.001)

[-0.001,0.001)
[0.001,0.003)

[0.003,0.005]
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Spatial Regression Continuous DV

GWR Residuals

Below is a map of residuals from the GWR model.

Residuals from GWR Model
[-50,-25) [-25,-5) [-5,5) [5,25) [25,50]
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Spatial Regression Continuous DV

Examples in R

Switch to R tutorial script. Section 6.b.
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Spatial Regression Discrete choice models

Spatial autologistic model

Up to this point, we have only examined models which assume that
the dependent variable is continuous and normally distributed.

But what if we are interested in studying discrete events, measured
categorically? (win/lose, war/peace, sick/healthy,
Democrat/Republican, etc.)

We may want to consider spatial dependence between observations
with a conditional probability model, where the occurrence of an
event y = 1 in neighboring units conditions the likelihood that unit i
will itself experience the event.

One option for such a task is the spatial autologistic model (Ward
and Gleditsch 2002).
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Spatial Regression Discrete choice models

Spatial autologistic model

The autologistic model states the conditional probability pi that
yi = 1, given values yj at units (j 6= i):

pi =P(yi = 1|Wyi ) =
eα+X′iβ+γWyi

1 + eα+Xiβ+γWyi

where β is a vector of parameters for exogenous variables, γ is a scalar
parameter for the spatial lag of y and W is a connectivity matrix.

When γ = 0, this expression reduces to a standard logistic model and
observations are considered independent of each other.

When β = 0, this expression reduces to a pure autologistic model
where unit-level covariates exert no independent influence on y once
spatial dependence is taken into account.
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Spatial Regression Discrete choice models

Spatial autologistic model

A maximum pseudo-likelihood estimator (MPE) for the unknown
parameter vector θ = (α β γ) is defined as the vector θ̂ which
maximizes

n∏
i=1

P(yi = 1|Wyi ) =
n∏

i=1

pyii (1− pi )
yi

An analytical form of the full likelihood is intractable because
observations yi are conditionally dependent on one another (Besag,
1974).

Two solutions have been proposed:
1 Maximum pseuso-likelihood estimation (MPLE).
2 MCMC techniques.
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Spatial Regression Discrete choice models

Spatial autologistic model: MPLE approach

Maximum pseudo-likelihood estimation maximizes the function
obtained by multiplying together the logit likelihoods represented by
equation on the previous slide (Besag 1977).

This is equivalent to a maximum likelihood fit for a logit regression
model with independent observations yi .

This procedure has been shown to provide consistent estimates of
model parameters (Cressie, 1993).

However, the standard errors of the estimated parameters are not
directly applicable because they assume independence of the
observations.

The inefficiency of MPLE increases when the strength of spatial
interaction is high (Huffer and Wu 1998).
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Spatial Regression Discrete choice models

Spatial autologistic model: MCMC approach

Markov Chain Monte Carlo estimation can yield approximations closer
to the full likelihood function (Geyer and Thompson 1992, Ward and
Gleditsch 2002).

One approach uses a probabilistic random map generated from the
autologistic model, defined by parameters θ and sufficient statistics
s(y).

s(y) =

(
n∑

i=1

yi ,
n∑

i=1

Xiyi ,
1

2

n∑
i=1

Wyi

)

A statistic s(y) is sufficient for y if it contains all the information
about y that is available in the sample.
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Spatial Regression Discrete choice models

Spatial autologistic model: MCMC

A Gibbs sampler is used to generate a set of m sampled simulated
maps with sufficient statistics (yl∈{1,...,m})

The samples are conditioned on the vector of parameters ψ, the initial
values for which are typically pseudolikelihood estimates for θ̂.

The idea is to find the values of θ̂ that yield the sufficient statistics
s(y) for the observed data.

MCMC maximum likelihood is obtained by solving the score equation

s(y) =

∑m
l=1 s(ym)e(θ̂−ψ)′s(ym)∑m

j=1 e
(θ̂−ψ)′s(ym)
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Spatial Regression Discrete choice models

Spatial autologistic model: MPLE vs. MCMC

Let’s try running the autologistic with some real data.

Ward and Gleditsch (2002) estimate a simple model of war, where the
probability of war in country i is conditioned on the number of
neighboring countries experiencing war and the level democracy in
those countries:

P(Wari = 1|War ′iW) =
eα+β1Demi+β2Dem′iW

s+γWar ′i W

1 + eα+β1Demi+β2Dem′iW
s+γWar ′i W

where Demi is a country i ’s Polity score (scaled −10 : 10 from least
to most democratic), Ws is a row-standardized weights matrix and W
is a binary contiguity matrix.
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Spatial Regression Discrete choice models

Spatial autologistic model: MPLE vs. MCMC

MPLE (ψ̂) and MCMC (θ̂) estimates for the model are shown below:

MPLE MCMC
Coef S.E. Coef S.E.

(Intercept) -1.87 (0.33) -1.53 (0.09)
Democracy -0.02 (0.03) -0.06 (0.01)

Spatial Lag of Democracy 0.01 (0.05) -0.02 (0.01)
Spatial Lag of War 0.31 (0.13) 0.21 (0.02)

So, parameter estimates are generally similar, but the standard errors from
MCMC are much smaller.
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Spatial Regression Discrete choice models

Examples in R

Switch to R tutorial script. Section 6.c.
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Spatial Regression Spatiotemporal Models

Partial Adjustment Model

Recall that with cross-sectional data, we often assume that
observations represent an equilibrium outcome of a spatiotemporal
process working over time.

Here we will examine how spatiotemporal models relate to models
used for CS data (SAR, SEM).

For simplicity, we assume that:

Units are influenced by their own and their neighbors’ history (no
simultaneous dependence).
W is symmetric.
No structural change over time.
The matrix X – which may include spatial lags of explanatory variables
– is constant or deterministically growing with respect to time.
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Spatial Regression Spatiotemporal Models

Partial Adjustment Model

A simple modeling framework for space-time data is the
Partial Adjustment Model (PAM).

Like a conventional temporal model, PAM allows the dependent
variable for each unit yt to depend on that unit’s own past values
yt−1, . . . , y0 and Xt−1, . . . ,X0.

This framework is extended to allow for spatial dependence on other
regions by incorporating spatial lags of temporal lags
Wyt−1, . . . ,Wy0 and WXt−1, . . . ,WX0.

For development of this model, see Greene (1997) and LeSage and
Pace (2009).
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Spatial Regression Spatiotemporal Models

Partial Adjustment Model

The spatial PAM is formally defined below:

yt = (τ In − ρW)yt−1 + X∗tβ + ut

X∗t = ψtX∗0 = ψt [X0 WX0 ιn]

ut = X∗tγ + r + εt

Where τ governs dependence between each region at time t and
t − 1, ρ governs spatial dependence between each region at time t
and neighboring regions at t − 1, ψ is the growth rate parameter for
X∗0 (ψ = 1 implies no growth, ψ > 1 implies growth; assume ψ > τ).

As in the SDM, we allow for potential dependence between omitted
variables and exogenous variables, such that the error term ut is
partitioned into an endogenous component X∗tγ, an independent and
time-invariant component r ∼ N(0, σ2

r In), and independent noise
εt ∼ N(0, σ2

ε In) which is allowed to vary with time.
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Spatial Regression Spatiotemporal Models

Partial Adjustment Model

This dynamic process implies a cross-sectional steady state characterized
by simultaneous spatial interaction. To demonstrate this, we can use the
recursive relation implied in the PAM:

yt−1 = (τ In − ρW)yt−2 + X∗t−1β + ut−1

The state of this dynamic system after the passage of t time periods is:

yt =(τ In − ρW)ty0

+
(
Inψ

t + (τ In − ρW)ψt−1+, . . . ,+(τ In − ρW)t−1ψ
)
X∗0β + ũt

ũt =X̃∗tγ + r̃ + ε̃t

X̃∗tγ =
(
Inψ

t + (τ In − ρW)ψt−1+, . . . ,+(τ In − ρW)t−1ψ
)
X∗0γ

r̃ =
(
In + (τ In − ρW)+, . . . ,+(τ In − ρW)t−1

)
r

ε̃t =εt + (τ In − ρW)εt−1 + (τ In − ρW)2εt−2+, . . . ,+(τ In − ρW)t−1ε1
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Spatial Regression Spatiotemporal Models

Partial Adjustment Model

Taking the expectation of yt yields:

E[yt ] ≈
(
Inψ

t + (τ In − ρW)ψt−1+, . . . ,+(τ In − ρW)t−1ψ
)
X∗0(β + γ)

≈
(
In + (τ In − ρW)ψ−1+, . . . ,+(τ In − ρW)t−1ψ−(t−1)

)
ψtX∗0(β + γ)

≈
(
In −

ρ

ψ − τ
W
)−1( ψ

ψ − τ

)
X∗t (β + γ)

≈ (In − ρ∗W)−1X∗tβ
∗

where ρ∗ = ρ
ψ−τ and β∗ = ψ(β+γ)

ψ−τ . This implies the familiar expression

yt = ρ∗Wyt + X∗tβ
∗ + vt

where vt are the disturbances.
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Spatial Regression Spatiotemporal Models

Partial Adjustment Model

Let’s consider the properties of yt = ρ∗Wyt + X∗tβ
∗ + vt .

The spatial autoregressive parameter ρ is amplified by ψ − τ , so that
values of ψ > 1 (implying growth in X) reduce the estimated spatial
dependence of the system as measured by ρ∗. This gives more weight
to the present.

Lower values of ψ < 1 (similarly, higher values of the temporal
parameter τ) increase the role of the past, allowing more time for
spatial influences to develop.
∴ even correctly-specified cross-sectional and spatiotemporal models
could yield very different estimates of spatial dependence:

Cross-sectional samples place more emphasis on a long-run equilibrium
result of a spatiotemporal process (i.e.: high spatial dependence).
Longitudinal samples place more emphasis on the temporal dependence
parameters (i.e.: low spatial dependence).
But a process with low spatial dependence and high temporal
dependence may still imply a long-run equilibrium with high spatial
dependence.
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