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A1 Training Set Intercoder Reliability

The current section reports intercoder reliability statistics for the subset of training set
documents that were held constant across all coders. Two research assistants (coders 1 and
2) read 650 documents each, 300 of which overlapped. The author (coder 3) read all training
set documents. Table A1.1 summarizes the intercoder reliability statistics, averaged across
all variables. Table A1.2 reports full intercoder reliability statistics for each variable.

Coders N Coders Agreement Holsti’s CR Krippendorff’s α Brennan Prediger’s κ Lotus

1,2,3 (N=300) 3 0.98 0.99 0.62 0.97 0.99
1,2 (N=300) 2 0.99 0.99 0.67 0.97 0.99
1,3 (N=650) 2 0.98 0.98 0.66 0.97 0.99
2,3 (N=650) 2 0.99 0.99 0.66 0.97 0.99

Table A1.1: Intercoder Reliability Statistics, Averaged Over All Variables

A2 Validation of Event Classifications

Table A2.3 reports validation accuracy statistics for LSTM models trained on the pooled,
multilingual (Ukrainian and Russian) training set, compared to models trained on each
monolingual training set alone. As the table reports, the pooled training set yields pre-
dictions with higher mean accuracy (i.e. averaged across variables) and lower variance (of
accuracy statistics across variables) than either monolingual training set.

Figure A2.1 illustrates six of the event categories as wordclouds. These images repre-
sent the subset of reports in the test set, whose predicted probabilities of belonging to each
category were in the 99th percentile. Font sizes are proportional to each word’s frequency
in the text. The wordclouds indicate that predicted labels generally align with the concep-
tual definitions in Table 1. For example, the t_armor category includes many documents
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mentioning tank battles, while t_civcas frequently mentions civilians in the accusative
case, indicating that they are the direct object of an action. Figure A2.1 also reveals some
idiosyncratic uses of language, which off-the-shelf dictionary classifiers — scanning the text
for standard terms like “Russian forces” — might miss. For example, Ukrainian sources
routinely refer to Russian troops as “occupiers” without mentioning their country of origin.

A3 Comparison of VIINA to Other Data Projects

Table A3.4 reports mean nearest neighbor distances between reported events in VIINA,
GDELT, ICEWS and ACLED. The table shows that the average VIINA event is closest,
on average, to events in ACLED (3.62 km), followed by GDELT (4.03 km) and ICEWS
(5.68). Meanwhile, the average ACLED event is closest to events in VIINA (1.45 km),
followed by GDELT (4.03 km) and ICEWS (6.37 km).

Table A3.5 reports Spearman’s correlation coefficients for the time series of each dataset,
both (a) in raw form, and decomposed into their (b) trend components, (c) seasonal compo-
nents, and (d) residual components. The table shows that ACLED’s time series is negatively
correlated with the other three, both in raw form, and as a trend. The pairwise correlation
coefficients are also substantially smaller for ACLED’s seasonal and residual components
than they are for any of the other datasets.
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Figure A2.1: Wordclouds of LSTM-Classified Events.

(a) Russian-initiated events [a_rus] (b) Ukrainian-initiated events [a_ukr]
“окупанти” (okupanty) means “occupiers” (U) “зсу” (zsu) is “Armed Forces of Ukraine” (U)

“ворог” (voroh) means “enemy” (U) “всу” (vsu) is “Armed Forces of Ukraine” (R)

(c) Armor / tank battles [t_armor] (d) Arrests / detentions [t_arrest]
“танки” (tanki) means “tanks” (R) “полон” (polon) means “captivity / POW camp” (U)

“танкiв” (tankiv) means “tanks” (U, acc) “захопили” (zahopyly) means “captured” (U)

(e) Military casualties [t_milcas] (d) Civilian casualties [t_civcas]
“понад” (ponad) means “more than” (U) “внаслiдок обстрiлiв” (vnasklidok obstriliv)
“втрати” (vtraty) means “losses” (U) means “due to shelling” (U)

“загинули” (zahynuly) means “died” (U) “мирних жителiв” (myrnykh zhyteliv)
“окупантiв” (okupantiv) means “occupiers” (U, acc) means “civilians” (U, acc)

Note: R: Russian language. U: Ukrainian language. acc: accusative case ending.
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Variable Agreement Holsti’s CR Krippendorff’s α Brennan Prediger’s κ Lotus

t_mil 0.85 0.90 0.72 0.80 0.95
t_loc 0.89 0.93 0.78 0.85 0.96
t_san 0.97 0.98 0.67 0.96 0.99
a_rus 0.89 0.92 0.62 0.85 0.96
a_ukr 0.94 0.96 0.56 0.92 0.98
a_civ 0.97 0.98 0.10 0.96 0.99
a_other 0.95 0.96 0.51 0.93 0.98
t_aad 0.99 0.99 0.69 0.98 1.00
t_airstrike 0.98 0.99 0.73 0.97 0.99
t_armor 1.00 1.00 0.75 1.00 1.00
t_arrest 0.98 0.99 0.54 0.98 0.99
t_artillery 0.97 0.98 0.82 0.96 0.99
t_control 0.99 0.99 0.50 0.98 1.00
t_firefight 0.99 0.99 0.20 0.98 1.00
t_ied 0.98 0.98 0.62 0.97 0.99
t_raid 0.99 0.99 0.25 0.99 1.00
t_occupy 0.97 0.98 0.33 0.96 0.99
t_retreat 0.99 0.99 0.40 0.99 1.00
t_property 0.95 0.97 0.63 0.93 0.98
t_cyber 1.00 1.00 1.00 1.00 1.00
t_hospital 1.00 1.00 0.00 1.00 1.00
t_sexual 1.00 1.00 1.00 1.00
t_milcas 0.97 0.98 0.54 0.96 0.99
t_civcas 0.99 0.99 0.90 0.98 1.00

Table A1.2: Intercoder Reliability Statistics, by Variable (all three coders, N=300)
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Training Set

Variable Pooled Russian Ukrainian

t_mil 0.81 0.87 0.77
t_loc 0.85 0.86 0.83
t_san 0.93 0.89 0.91
a_rus 0.85 0.93 0.88
a_ukr 0.94 0.95 0.94
a_civ 1.00 0.99 1.00
a_other 0.96 0.95 0.95
t_aad 0.99 0.99 0.98
t_airstrike 0.98 0.99 0.98
t_airalert 1.00 1.00 0.99
t_armor 0.99 0.99 0.99
t_arrest 0.96 0.99 0.97
t_artillery 0.95 0.93 0.94
t_control 0.98 0.98 0.99
t_firefight 0.99 0.93 0.98
t_killing 0.99 0.99 0.98
t_ied 0.98 0.99 0.99
t_raid 0.99 1.00 0.99
t_occupy 0.99 1.00 0.96
t_property 0.95 0.97 0.92
t_cyber 0.96 0.99 0.97
t_hospital 0.99 1.00 0.98
t_milcas 0.98 0.99 0.94
t_civcas 0.95 0.97 0.97

Mean 0.96 0.96 0.95
Std.Dev. 0.05 0.04 0.06

Table A2.3:Out-of-Sample Accuracy, Multilingual vs. Monolingual Training Sets
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VIINA GDELT ICEWS ACLED

VIINA 0.00 4.02 5.68 3.60
GDELT 8.74 0.00 1.87 8.98
ICEWS 1.48 2.23 0.00 2.01
ACLED 1.45 4.03 6.37 0.00

Table A3.4: Mean Nearest Neighbor Distances Between Events in Each Dataset.
Each cell value dij represents the average distance, in kilometers, between each event in
dataset i (in rows) and its geographically closest event in dataset j (in columns). Smaller
values indicate greater similarity across point patterns.

GDELT ICEWS ACLED
VIINA 0.61 0.63 -0.41
GDELT 0.75 -0.47
ICEWS -0.50

GDELT ICEWS ACLED
VIINA 0.60 0.66 -0.48
GDELT 0.85 -0.72
ICEWS -0.77

(a) Raw Time Series (b) Trend Component

GDELT ICEWS ACLED
VIINA 0.84 0.96 -0.11
GDELT 0.88 0.25
ICEWS 0.11

GDELT ICEWS ACLED
VIINA 0.30 0.32 0.06
GDELT 0.37 0.13
ICEWS 0.07

(c) Seasonal Component (d) Residual Component

Table A3.5: Pairwise Spearman’s Correlation for Time Series of Event Data
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A4 Luminosity Validation Check

Luminosity is a valid proxy for economic activity only if it correlates in a predictable
fashion with other sub-national measures of production and consumption. To establish
this, we assessed the empirical relationship between gross regional product (GRP) and
average annual luminosity in Ukraine prior to the war. Ukraine’s State Statistics Service
releases GRP estimates annually at the oblast level, from 2004 to 2021. We linked the
GRP data to data on annual global VIIRS nighttime lights (Annual VNL v2.1, Elvidge
et al. 2021), which are available at a resolution of 15 arc seconds from 2012 to 2021.1 The
combined dataset contains 254 oblast-year observations, including 27 oblasts from 2012 to
2013, and 25 oblasts from 2014 to 2021.2

We estimate the following regression model:

logpGRPitq “γ logpLuminosityitq ` αi ` ωt ` εit (A4.1)

where i indexes oblasts and t indexes years. αi and ωt are oblast and yearly fixed effects.
Our quantity of interest is the coefficient γ, which can be interpreted as the elasticity of
GRP with respect to Luminosity, i.e., δ GRP

δ Luminosity

`Luminosity
GRP

˘

. We estimated the same model
with GRP per capita as the dependent variable.

Table A4.6 reports coefficient estimates from these models. For both outcomes, the esti-
mate is γ̂ “ 0.47, meaning that a one percentage point increase in luminosity is associated
with, on average, a 0.47 percentage point increase in an oblast’s GRP (per capita).

Because oblasts differ in the composition of their economic bases, we may expect the
elasticity of economic activity to luminosity to vary across space. To explore this possibility,
Figure A4.2 reports estimates from an expanded specification of the model in equation
(A4.1), replacing the parameter γ with oblast-specific coefficients γi. The black dots and

1 We aggregated the VIIRS data in two steps. First, we calculated average annual luminosity in the same
spatial units that we used in the main analysis (880 urban populated places). Second, we summed these
average luminosity estimates across the urban populated places in each oblast. Formally, Luminosityit “
řNi

k Luminositykt, where k P t1, . . . , Niu indexes populated places inside oblast i, and Luminositykt is the
average annual luminosity of populated place k in year t.

2 After 2014, national accounts exclude Russian-occupied territories of Ukraine (i.e. Crimea and parts
of Donets’k and Luhans’k oblasts). We exclude these areas from our aggregate oblast-level luminosity
estimates, to ensure that both sets of data have common geographic support.
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horizontal lines represent γ̂i point estimates and 95 percent confidence intervals for each
of Ukraine’s 27 oblasts. The vertical lines and grey bars in the background represent the
general γ̂ point estimate and 95% confidence interval, as reported in Table A4.6. The γ̂i
estimates are positive in almost all cases, but vary in magnitude. Notably, the three largest
regional elasticity estimates are in territories that are either fully (Sevastopol’) or partially
occupied by Russia (Luhans’k and Donets’k) — the latter of which have also been at the
epicenter of ground combat operations in the war.

Table A4.7 further expands the model to explore variation in the GRP-luminosity
relationship over time. Because GRP data are not yet available for 2022, we are unable to
directly examine the extent to which Russia’s full-scale invasion has disrupted the positive
association between luminosity and GRP observed in 2012-2021. However, we are able to
compare estimates taken before and after Russia’s more limited intervention in 2014 —
which began with the annexation of Crimea and Sevastopol’ and evolved into a protracted
war of attrition in the Donbas. To this end, Table A4.7 reports γ̂ estimates, along with
coefficient estimates for a “post-2014” interaction term. These estimates suggest that the
positive link between GRP and luminosity has strengthened slightly over time. Taking the
most conservative set of estimates, with oblast and annual fixed effects (Models 1 and 2),
the estimated elasticity before 2014 is 0.45 for GRP and 0.46 for GRP per capita. After
2014, these estimates rise to 0.45` 0.03 “ 0.48 and 0.46` 0.03 “ 0.49.

Table A4.7 also reports estimates from restricted versions of the same model, after
omitting both sets of fixed effects (Models 3 and 4), oblast-level fixed effects αi (Models 5
and 6), and yearly fixed effects ωt (Models 7 and 8). These alternative specifications allow
us to take stock of how unobserved sources of variation over time and space might affect
the estimation of γ. For example, pooling the data across all oblasts and time periods may
lead us to over-estimate the relationship between luminosity and GRP (0.58 ą 0.45) and
under-estimate the coefficient for GRP per capita (0.28 ă 0.46). Estimates for models with
time fixed effects (5 and 6) are numerically close to those in the pooled models (3 and
4), suggesting that correcting for time-specific shocks alone does not bring these estimates
closer to values from the fully specified models (1 and 2), which include both types of
fixed effects. In contrast, estimates for Models 7 and 8 — which account for unobserved
factors specific to each oblast, but not time-specific shocks common to all oblasts — are
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substantially larger than for either the pooled or two-way models. These estimates suggest
that omitted variable bias from unobserved variables that evolve over time may result in an
over-estimation of the GRP-luminosity relationship. Unsurprisingly, model fit statistics are
strongest for the two-way fixed effects models — with lower RMSE and AIC, and higher
R2. The inclusion of both sets of fixed effects enables us to explain substantially more
variation in economic activity.

Table A4.6: Gross Regional Procuct (GRP) and Luminosity.

GRP (1) GRP per capita (2)

log(Average annual luminosity) 0.47** 0.47**

(0.11) (0.11)

Number of observations 254 254
RMSE 0.118 0.116
AIC ´291 ´300
Adjusted R2 0.982 0.97
FE: oblasts (αi) X X

FE: years (ωt) X X

Number of oblasts ˆ years 27 ˆ 10 27 ˆ 10

Outcomes are (1) logged gross regional product and (2) logged per capita
gross regional product in oblast i and year t. Fixed effect OLS coefficient esti-
mates, heteroskedasticity and serial autocorrelation consistent standard errors
in parentheses. Sample restricted to built-up areas. Russian-occupied Crimea
and parts of Donets’k and Luhans’k oblasts omitted post-2014. Significance
levels: ’p ă 0.1, *p ă 0.05, **p ă 0.01
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Figure A4.2: Luminosity Validation Check with Oblast-Specific Coefficient Estimates

(a) GRP (b) GRP per Capita

Points and horizontal lines are oblast-specific point estimates and 95% confidence intervals.
Grey vertical line and region is the coefficient estimate and 95% CI from Table A4.6.

.
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Table A4.7: Temporal and Cross-Sectional Variation in the GRP-Luminosity Relationship.

GRP (1) GRP pc (2) GRP (3) GRP pc (4) GRP (5) GRP pc (6) GRP (7) GRP pc (8)

log(Average annual luminosity) 0.45** 0.46** 0.58** 0.28** 0.58** 0.28** 1.05** 1.08**

(0.11) (0.11) (0.01) (0.002) (0.01) (0.002) (0.22) (0.24)
ˆ post-2014 0.03* 0.03* 0.04 0.07** 0.02 0.05** 0.07* 0.07’

(0.01) (0.01) (0.02) (0.02) (0.02) (0.01) (0.03) (0.03)

Number of observations 254 254 254 254 254 254 254 254
RMSE 0.117 0.115 0.5 0.459 0.396 0.316 0.315 0.324
AIC ´293 ´300 376 333 274 159 194 208
Adjusted R2 0.982 0.97 0.679 0.527 0.799 0.776 0.872 0.764
FE: oblasts (αi) X X X X

FE: years (ωt) X X X X

Number of oblasts ˆ years 27 ˆ 10 27 ˆ 10 27 ˆ 10 27 ˆ 10 27 ˆ 10 27 ˆ 10 27 ˆ 10 27 ˆ 10

Outcomes are (1,3,5,7) logged gross regional product and (2,4,6,8) logged per capita gross regional product in oblast i and year t. Fixed
effect OLS coefficient estimates, heteroskedasticity and serial autocorrelation consistent standard errors in parentheses. Sample restricted
to built-up areas. Russian-occupied Crimea and parts of Donets’k and Luhans’k oblasts omitted post-2014. Significance levels: ’p ă 0.1,
*p ă 0.05, **p ă 0.01

A5 Robustness Checks

The current section considers the sensitivity of the results in Table 3 to several sources of
uncertainty and bias, including:

• Temporal autocorrelation. The robust standard error estimates in Table 3 are
clustered by populated place, which accounts for potential non-independence of ob-
servations taken within each geographic unit. As an additional check, Table A5.8
implements the Newey-West correction of standard errors for heteroscedasticity and
serial autocorrelation, up to a first-order lag. The resulting standard error estimates
are numerically close to those in Table 3.

• Spatial autocorrelation. While our clustered standard errors correct for non-
independence within units and over time, they do not account for uncertainty due to
spatial autocorrelation across nearby units. To this end, Table A5.9 reports Conley
(1999) standard error estimates, which allow for both serial correlation over time pe-
riods, and spatial correlation among locations that fall within a set distance of each
other. By way of a cutoff, we used the distance from the median populated place to
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the farthest of its k “ 5 nearest neighbors (5.5 km for the night lights data, 4.8 km
for the vegetation data). Our coefficient estimates in the night lights model remain
significant at the p ă .05 level or better, as does the estimate for Russian control in
the NDVI model. The estimate for exposure to shelling in the NDVI model, however,
becomes more uncertain after we account for spatial autocorrelation.

• Alternative baseline for luminosity. Our main model specification compares
urban luminosity after February 24, 2022 (Y wartime

it ) to “peacetime” levels of lumi-
nosity in the same month during the previous year (Y peacetime

it ). A potential concern
with this approach is that luminosity in 2021 may reflect, in part, light masking
and other sources of variation related to Russia’s military buildup on the border
(which began as early as April 2021). To address this concern, Table A5.10 reports
coefficient estimates for the luminosity model, using three different baseline peri-
ods: (a) 2/24/2021-2/23/2022, same as in Table 3, (b) 2/24/2020-2/23/2021, and (c)
2/24/2019-2/23/2020.3 Our results are robust to these alternative baselines: coeffi-
cient estimates are numerically close across the board, and all three sets of estimates
remain statistically significant at the p ă .05 level or better. However, model fit
statistics (R2, AIC, RMSE) are strongest under the most recent baseline period.

• War-related fires. An important variable missing from our main specification is
fire damage from shelling, airstrikes and other war-related events. These fires may
explain variation in both luminosity (through destruction of physical structures, or
by creating transient sources of nighttime light) and vegetation (by burning crops
and farm equipment), in ways that VIINA data may not fully capture. Table A5.11
extends our main model specifications to include the (logged) number of war-related
fires that occurred in the populated place during the previous month, as estimated
by the Economist’s war fire model (The Economist and Solstad, 2023). As one might
expect, locations with greater exposure to war-related fires experienced a decline in
vegetation during the following month: doubling the number of fires is associated with

3 An important consideration is that using earlier baseline years risks introducing new sources of
variation in luminosity that could be mis-attributed to war-related violence (e.g. light differences due to
economic migration, urban growth, infrastructure development, Covid-19 restrictions).
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a p2´0.12 ´ 1q ˆ 100 “ ´8 percentage point decrease in vegetation. The coefficient
estimate on fires is also negative in the luminosity model, although the latter result
is statistically insignificant. Our core results — for territorial control and shelling —
remain significant and numerically close to those in Table 3.

• Time-invariant covariates. Our main specification includes fixed effects at the
level of populated places. This estimation strategy helps account for unobserved
local confounders and mitigates against omitted variable bias. It also precludes infer-
ences about associations between observed time-invariant covariates and our outcome
measures. Table A5.12 adjusts the specification to replace populated place-level fixed
effects αi with oblast-level fixed effects αjris, where jris is the oblast that contains
populated place i. This adjustment allows us to estimate coefficients for several co-
variates that vary across populated places, but not within them, including:

– Topographic features, like elevation (NOAA National Geophysical Data Center,
2009) and distance to the nearest river, lake or other inland body of water
(Defense Mapping Agency, 1992).

– Distance to strategically-important sites and infrastructure, like administrative
centers (geonames.org) and railroads (Defense Mapping Agency, 1992).

– Local demographics, like population size (Schiavina, Freire and MacManus, 2019)
and share of Russian speakers (State Committee on Statistics of Ukraine, 2001).

– Pre-2022 military geography, like distance to the line of contact as it existed at
the time of the Minsk II agreement in February 2015 (Zhukov, 2016).

As Table A5.12 reports, our core results are robust to the inclusion of these time-
invariant covariates. Our estimates for the luminosity model are of the same sign as in
Table 3, and are statistically significant at the p ă .01 level. The same is partly true
for our vegetation model: the positive estimate for Russian control loses significance,
but the negative estimate for contested control gains significance. Model fit statistics,
however, are inferior to those from our main fixed effects specifications in Table 3.

• Alternative measures of violence. While shelling from field artillery and rocket
systems represents the most frequent type of violent event in this war, it is important
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Table A5.8: Estimates with Newey-West Standard Errors.

Luminosity (1) NDVI (2)

Contested control ´0.56** ´0.01
(0.11) (0.01)

Russian control 0.26* 0.07**
(0.1) (0.01)

log(Distance from shelling) 0.09** 0.01*
(0.02) (0.004)

Number of observations 9,676 207,241
RMSE 0.659 0.352
AIC 21,176 190,996
Adjusted R2 0.76 0.626
FE: populated places (αi) X X
FE: months (ωt) X X
Number of pop. places ˆ months 880 ˆ 11 17,513 ˆ 12
Outcomes are (1) logged average nightly luminosity and (2) logged normalized
difference vegetation index in populated place i and month t. Fixed effect OLS
coefficient estimates, Newey-West heteroskedasticity and serial autocorrelation
consistent standard errors in parentheses. All models adjust for (1) logged lumi-
nosity and (2) logged NDVI in the same month of past year. Sample restricted
to (1) built-up areas and (2) irrigated cropland and pasture. Significance levels:
*p ă 0.05, **p ă 0.01

to consider how exposure to other types of violence might impact luminosity and
vegetation. To this end, Tables A5.13 and A5.14 re-estimate our main models with
several of the most common alternative measures of violence in VIINA, including
air raid alerts, anti-air defenses, raids, troop withdrawals, events resulting in military
casualties, and events resulting in civilian casualties. In almost all cases, the estimated
coefficients are significant and of the same sign as that for exposure to artillery
shelling. The sole exception is civilian casualties, the estimate for which fails to meet
conventional levels of statistical significance in the luminosity model.
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Table A5.9: Estimates with Conley Standard Errors.

Luminosity (1) NDVI (2)

Contested control ´0.56** ´0.01
(0.16) (0.02)

Russian control 0.26* 0.07**
(0.13) (0.01)

log(Distance from shelling) 0.09* 0.01
(0.07) (0.01)

Number of observations 9,676 207,241
RMSE 0.659 0.352
AIC 21,176 190,996
Adjusted R2 0.76 0.626
FE: populated places (αi) X X
FE: months (ωt) X X
Number of pop. places ˆ months 880 ˆ 11 17,513 ˆ 12
Outcomes are (1) logged average nightly luminosity and (2) logged normal-
ized difference vegetation index in populated place i and month t. Fixed effect
OLS coefficient estimates, Conley heteroskedasticity and spatial autocorrelation
consistent standard errors in parentheses. All models adjust for (1) logged lumi-
nosity and (2) logged NDVI in the same month of past year. Sample restricted
to (1) built-up areas and (2) irrigated cropland and pasture. Significance levels:
*p ă 0.05, **p ă 0.01
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Table A5.10: Luminosity Estimates with Alternative Baseline Years.

Luminosity (1) Luminosity (2) Luminosity (3)

Contested control ´0.56** ´0.51** ´0.59**
(0.12) (0.13) (0.14)

Russian control 0.26* 0.27* 0.27*
(0.11) (0.13) (0.13)

log(Distance from shelling) 0.09** 0.09** 0.07*
(0.03) (0.03) (0.03)

Number of observations 9,676 9,676 9,676
RMSE 0.659 0.715 0.71
AIC 21,176 22,756 22,612
Adjusted R2 0.76 0.718 0.722
FE: populated places (αi) X X X
FE: months (ωt) X X X
Number of pop. places ˆ months 880 ˆ 11 880 ˆ 11 880 ˆ 11
Models adjust for logged luminosity in the same month of the time period (1) 3/2021-2/2022, (2)
3/2020-2/2021, (3) 3/2019-2/2020. Outcome is logged average nightly luminosity in populated
place i and month t. Fixed effect OLS coefficient estimates, standard errors clustered by pop.
place in parentheses. Sample restricted to built-up areas. Significance levels: ’ p ă 0.1, *p ă
0.05, **p ă 0.01
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Table A5.11: Estimates Adjusting for War-Related Fires.

Luminosity (1) NDVI (2)

Contested control ´0.56** ´0.01
(0.12) (0.01)

Russian control 0.25* 0.08**
(0.11) (0.01)

log(Distance from shelling) 0.08* 0.01*
(0.03) (0.005)

log(Number of fires) ´0.04 ´0.12**
(0.04) (0.004)

Number of observations 9,676 207,241
RMSE 0.659 0.352
AIC 21,177 190,615
Adjusted R2 0.76 0.626
FE: populated places (αi) X X
FE: months (ωt) X X
Number of pop. places ˆ months 880 ˆ 11 17,513 ˆ 12
Outcomes are (1) logged average nightly luminosity and (2) logged normalized
difference vegetation index in populated place i and month t. Fixed effect OLS
coefficient estimates, standard errors clustered by pop. place in parentheses.
All models adjust for (1) logged luminosity and (2) logged NDVI in the same
month of past year. Sample restricted to (1) built-up areas and (2) irrigated
cropland and pasture. Significance levels: ’ p ă 0.1, *p ă 0.05, **p ă 0.01
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Table A5.12: Estimates Adjusting for Time-Invariant Covariates.

Luminosity (1) NDVI (2)

Contested control ´0.32** ´0.02*
(0.11) (0.01)

Russian control 0.46** 0.004
(0.09) (0.003)

log(Distance from shelling) 0.13** 0.01**
(0.03) (0.003)

log(Elevation) 0.09** ´0.003
(0.02) (0.002)

log(Distance to water) 0.04’ ´0.01**
(0.02) (0.001)

log(Distance to admin center) ´0.01 0.005**
(0.02) (0.002)

log(Distance to railroad) 0.002 ´0.01**
(0.02) (0.001)

log(Population size) ´0.07** ´0.002**
(0.01) (0.001)

Percent Russian 0.01** 4e-04**
(0.003) (2e-04)

log(Distance to pre-2022 line) ´0.1’ ´0.01**
(0.06) (0.002)

Number of observations 9,676 207,193
RMSE 0.765 0.368
AIC 22,378 174,234
Adjusted R2 0.676 0.591
FE: oblasts (αjris) X X
FE: months (ωt) X X
Number of oblasts ˆ months 27 ˆ 11 27 ˆ 12
Outcomes are (1) logged average nightly luminosity and (2) logged normalized
difference vegetation index in populated place i and month t. Fixed effect OLS
coefficient estimates, standard errors clustered by pop. place in parentheses.
All models adjust for (1) logged luminosity and (2) logged NDVI in the same
month of past year. Sample restricted to (1) built-up areas and (2) irrigated
cropland and pasture. Significance levels: ’ p ă 0.1, *p ă 0.05, **p ă 0.01
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