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1 Theoretical Appendix

1.1 Proof of Proposition 1

This proposition depends on the following Lemmas.

Lemma 1. It is always more costly to remain neutral than to cooperate with one of the combatants.

Proof. Let κ(i) denote the expected costs associated with membership in group i ∈ {G,R,C}, with κ(G) =
ρRθR, κ(R) = ρGθG, and κ(C) = ρR(1 − θR) + ρG(1 − θG). The statement [κ(C) < κ(G)] ∧ [κ(C) < κ(R)]
(�staying neutral is less costly than joining either combatant�) is never true for any ρG ∈ (0, ρmaxG ), ρR ∈
(0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1] and θG + θR = 1. The statement [κ(C) < κ(G)] ∧ [κ(C) > κ(R)] (�staying
neutral is less costly than joining G but more costly than joining R�) is true if and only if [ρG < ρR] ∧[
0 ≤ θG < ρR−ρG

2ρR−ρG

]
, and [κ(C) > κ(G)] ∧ [κ(C) < κ(R)] (�staying neutral is more costly than joining G

but less costly than joining R�) is true if and only if [ρG > ρR] ∧
[

ρG
2ρG−ρR < θG ≤ 1

]
. The statement

[κ(C) > κ(G)] ∧ [κ(C) > κ(R)] (�staying neutral is more costly than joining G or R�) is true in all other

cases: (1) [ρG > ρR] ∧
[
0 ≤ θG < ρG

2ρG−ρR

]
, (2) [ρG < ρR] ∧

[
ρR−ρG
2ρR−ρG < θG ≤ 1

]
.

Lemma 1 shows that the use of indiscriminate violence in irregular war partially solves the
combatants' collective action problem by rendering �free-riding� (i.e. staying neutral) more costly
than cooperation (?). Because civilians absorb damage from both government and rebel violence,
being a neutral civilian will always be strictly costlier than cooperating with the combatants � each
of whom only absorbs damage in�icted by one side.

Lemma 2. There exist three equilibrium solutions to (3-5) in which the outcome of the �ghting does

not depend on the initial balance of forces: government victory, rebel victory and mutual destruction.

Proof. De�ne a government victory equilibrium of (3-5) as a �xed point satisfying δC
δt = 0, δGδt = 0, δRδt = 0,

Ceq ∈ [0,∞), Geq ∈ [0,∞), Req ∈ [0,∞) and πG(s) = 1, πR(s) = 0. These conditions are satis�ed at

Ceq =
ρRθR + u

µG
(13)

Geq =
k

ρRθR + u
− ρG(1− θG) + ρR(1− θR) + u

µG
(14)

Req = 0 (15)

This equilibrium exists (i.e. yields non-negative equilibrium group sizes) for all ρG ∈ (0, ρmaxG ), ρR ∈
(0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], k ∈ (0,∞), u ∈ (0,∞), with µG, µR as de�ned in (1,2).

De�ne a rebel victory equilibrium of (3-5) as a �xed point satisfying δC
δt = 0, δGδt = 0, δRδt = 0, Ceq ∈

[0,∞), Geq ∈ [0,∞), Req ∈ [0,∞) and πG(s) = 0, πR(s) = 1. These conditions are satis�ed at

Ceq =
ρGθG + u

µR
(16)

Geq = 0 (17)

Req =
k

ρGθG + u
− ρG(1− θG) + ρR(1− θR) + u

µR
(18)

This equilibrium exists (i.e. yields non-negative equilibrium group sizes) for all ρG ∈ (0, ρmaxG ), ρR ∈
(0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], k ∈ (0,∞), u ∈ (0,∞), with µG, µR as de�ned in (1,2).
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De�ne a mutual destruction equilibrium of (3-5) as a �xed point satisfying δC
δt = 0, δGδt = 0, δRδt = 0,

Ceq ∈ [0,∞), Geq ∈ [0,∞), Req ∈ [0,∞) and πG(s) = 0, πR(s) = 0. These conditions are satis�ed at

Ceq =
k

ρG(1− θG) + ρR(1− θR) + u
(19)

Geq = 0 (20)

Req = 0 (21)

This equilibrium exists (i.e. yields non-negative equilibrium group sizes) for all ρG ∈ (0, ρmaxG ), ρR ∈
(0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], k ∈ (0,∞), u ∈ (0,∞), with µG, µR as de�ned in (??,??).

Lemma 2 shows that, as the �ghting unfolds over time, the system in (??-??) will converge
to one of two equilibria of primary interest � government victory or rebel victory � and a third
equilibrium in which both combatant populations converge to zero. I now turn to the main claim
of Proposition 1 (�a government victory equilibrium is stable i�. the government's rate of selective
violence is greater than that of the rebels�).

Proof. The stability of the government monopoly equilibrium in (13-15) can be shown through
linearization. Assume ρG ∈ (0, ρmaxG ), ρR ∈ (0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], with µi as de�ned
in (1,2). To ensure non-negative population values in equilibrium, I impose a lower bound on

immigration parameter k > (ρRθR+u)(ρG(1−θG)+ρR(1−θR)+u)
µG

.

Let J be the Jacobian of the system in (3-5), evaluated at �xed point (13-15).

J =


− kµG
ρRθR+u

−ρRθR − u −µR(ρRθR+u)
µG

0 0 µR(ρRθR+u)
µG

− ρGθG − u
kµG−(ρRθR+u)(ρG(1−θG)+ρR(1−θR)+u)

ρRθR+u
0 0

 (22)

The determinant and trace of J are

det(J) =
(−ρRθR − u)

(
µR(ρRθR+u)

µG
− ρGθG − u

)
(kµG − (ρRθR + u) (ρG(1− θG) + ρR(1− θR) + u))

ρRθR + u
(23)

tr(J) = −
kµG

ρRθR + u
(24)

The equilibrium point (13-15) is stable if all the eigenvalues of J have negative real parts, or
det(J) > 0, tr(J) < 0. These conditions hold if and only if ρGθGρRθR

> 1.

1.2 Proof of Proposition 2

This proposition depends on the following Lemma.

Lemma 3. There exist three equilibrium solutions to (9-11) in which the outcome of the �ghting does

not depend on the initial balance of forces: government victory, rebel victory and mutual destruction.

Proof. De�ne a government victory equilibrium of (9-11) as a �xed point satisfying δC
δt = 0, δGδt = 0, δRδt = 0,

Ceq ∈ [0,∞), Geq ∈ [0,∞), Req ∈ [0,∞) and πG(s) = 1, πR(s) = 0. These conditions are satis�ed at

Ceq =
(1− h)ρRθR + u

µ∗
G

(25)

Geq =
k

(1− h)ρRθR + u
− ρG(1− θG) + (1− h)ρR(1− θR) + u

µ∗
G

(26)

Req = 0 (27)
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This equilibrium exists (i.e. yields non-negative equilibrium group sizes) for all ρG ∈ (0, ρmaxG ), ρR ∈
(0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], k ∈ (0,∞), u ∈ (0,∞), h ∈ (0, 1), with µ∗

G, µ
∗
R as de�ned in (7,8).

De�ne a rebel victory equilibrium of (9-11) as a �xed point satisfying δC
δt = 0, δGδt = 0, δRδt = 0,

Ceq ∈ [0,∞), Geq ∈ [0,∞), Req ∈ [0,∞) and πG(s) = 0, πR(s) = 1. These conditions are satis�ed at

Ceq =
ρGθG + u

µ∗
R

(28)

Geq = 0 (29)

Req =
k

ρGθG + u
− ρG(1− θG) + (1− h)ρR(1− θR) + u

µ∗
R

(30)

This equilibrium exists (i.e. yields non-negative equilibrium group sizes) for all ρG ∈ (0, ρmaxG ), ρR ∈
(0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], k ∈ (0,∞), u ∈ (0,∞), h ∈ (0, 1), with µ∗

G, µ
∗
R as de�ned in (7,8).

De�ne a mutual destruction equilibrium of (9-11) as a �xed point satisfying δC
δt = 0, δGδt = 0, δRδt = 0,

Ceq ∈ [0,∞), Geq ∈ [0,∞), Req ∈ [0,∞) and πG(s) = 0, πR(s) = 0. These conditions are satis�ed at

Ceq =
k

ρG(1− θG) + (1− h)ρR(1− θR) + u
(31)

Geq = 0 (32)

Req = 0 (33)

This equilibrium exists (i.e. yields non-negative equilibrium group sizes) for all ρG ∈ (0, ρmaxG ), ρR ∈
(0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], k ∈ (0,∞), u ∈ (0,∞), h ∈ (0, 1), with µ∗

G, µ
∗
R as de�ned in (7,8).

I now turn to the main claim of Proposition 2 (�if the government con�scates a su�ciently large
share of privately-held arms, a coercive advantage is a su�cient, but not necessary condition for
victory�).

Proof. The stability of the government monopoly equilibrium in (25-27) can be shown through
linearization. Assume ρG ∈ (0, ρmaxG ), ρR ∈ (0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], with µ∗i as de�ned
in (7,8). To ensure non-negative population values in equilibrium, I impose a lower bound on

immigration parameter k > (1−h)(ρRθR+u)(ρG(1−θG)+(1−h)ρR(1−θR)+u)
µ∗G

.

Let J be the Jacobian of the system in (9-11), evaluated at �xed point (25-27).

J =


− kµ∗

G
(1−h)ρRθR+u

−(1− h)ρRθR − u −µ
∗
R((1−h)ρRθR+u)

µ∗
G

0 0
µ∗
R((1−h)ρRθR+u)

µ∗
G

− ρGθG − u
kµ∗

G−((1−h)ρRθR+u)(ρG(1−θG)+(1−h)ρR(1−θR)+u)

(1−h)ρRθR+u
0 0


(34)

The determinant and trace of J are

det(J) =
(−(1− h)ρRθR − u)

(
µ∗
R((1−h)ρRθR+u)

µ∗
G

− ρGθG − u
) (
kµ∗G − ((1− h)ρRθR + u) (ρG(1− θG) + (1− h)ρR(1− θR) + u)

)
(1− h)ρRθR + u

(35)

tr(J) = −
kµG

(1− h)ρRθR + u
(36)

The equilibrium point (25-27) is stable if all the eigenvalues of J have negative real parts, or
det(J) > 0, tr(J) < 0. These conditions hold i� h > 1− ρGθG

ρRθR
.
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Proving Corollary 2.1 is straightforward from this stability condition. If h = 1 − ρGθG
ρRθR

, then
dh
dθG

< 0, dh
dθR

> 0 for all ρG ∈ (0, ρmaxG ), ρR ∈ (0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1].

1.3 Proof of Proposition 3

This proposition depends on a modi�ed system of equations

δC

δt
= k − ((µ∗R + ιR)Rt + (µ∗G + ιG)Gt − (1− h)ρR(1− θR)− ρG(1− θG)− u)Ct (37)

δG

δt
= ((µ∗G + ιG)Ct − (1− h)ρRθR − u)Gt (38)

δR

δt
= ((µ∗R + ιR)Ct − ρGθG − u)Rt (39)

and the following Lemma

Lemma 4. There exist two equilibrium solutions to (37-39) in which the outcome of the �ghting

does not depend on the initial balance of forces: government victory and rebel victory.

Proof. De�ne a government victory equilibrium of (37-39) as a �xed point satisfying δC
δt = 0, δGδt = 0, δRδt = 0,

Ceq ∈ [0,∞), Geq ∈ [0,∞), Req ∈ [0,∞) and πG(s) = 1, πR(s) = 0. These conditions are satis�ed at

Ceq =
(1− h)ρRθR + u

µ∗
G + ιG

(40)

Geq =
k

(1− h)ρRθR + u
− ρG(1− θG) + (1− h)ρR(1− θR) + u

µ∗
G + ιG

(41)

Req = 0 (42)

This equilibrium exists for all ρG ∈ (0,∞), ρR ∈ (0,∞), θG ∈ [0, 1], θR ∈ [0, 1], ιG ∈ [0,∞), ιR ∈ [0,∞), k ∈
(0,∞), u ∈ (0,∞), h ∈ (0, 1), with µ∗

R = 1− ρGθG
ρG+(1−h)ρR , µ

∗
G = 1− (1−h)ρRθR

ρG+(1−h)ρR .

De�ne a rebel victory equilibrium of (37-39) as a �xed point satisfying δC
δt = 0, δGδt = 0, δRδt = 0, Ceq ∈

[0,∞), Geq ∈ [0,∞), Req ∈ [0,∞) and πG(s) = 0, πR(s) = 1. These conditions are satis�ed at

Ceq =
ρGθG + u

µ∗
R + ιR

(43)

Geq = 0 (44)

Req =
k

ρGθG + u
− ρG(1− θG) + (1− h)ρR(1− θR) + u

µ∗
R + ιR

(45)

This equilibrium exists for all ρG ∈ (0,∞), ρR ∈ (0,∞), θG ∈ [0, 1], θR ∈ [0, 1], ιG ∈ [0,∞), ιR ∈ [0,∞), αG ∈
[0,∞), αR ∈ [0,∞), k ∈ (0,∞), u ∈ (0,∞), d ∈ (0, 1), with µ∗

R = 1− ρGθG
ρG+(1−h)ρR , µ

∗
G = 1− (1−h)ρRθR

ρG+(1−h)ρR .

I now turn to the main proof of Proposition 3.

Proof. Assume ρG ∈ (0,∞), ρR ∈ (0,∞), θG ∈ [0, 1], θR ∈ [0, 1], ιG ∈ [0,∞), ιR ∈ [0,∞), h ∈ (0, 1), with
θR > θG. To ensure nonnegative population values, we also impose a lower bound on immigration parameter

k > (1−h)ρR(1−θR)+ρG(1−θG)+u)((1−h)ρRθR+u)
µ∗
G+ιG

. By linearization, a government victory equilibrium is stable

if all the eigenvalues of the Jacobian matrix of the system in (37-39), evaluated at �xed point (40-42),
have negative real parts, or det(J) > 0, tr(J) < 0. These conditions hold if h > max(h∗(1), h

∗
(2)), where

h∗(1) = 1− (µ∗
G+ιG)(ρGθG+u)

(µ∗
R)ρRθR

+ u
ρRθR

, and h∗(2) = 1− (µ∗
G+ιG)(ρGθG+u)
(µ∗

R+ιR)ρRθR
+ u

ρRθR
.
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For Corollary 3.1, we substitute µ∗R = 1− ρGθG
ρG+(1−h)ρR

, µ∗G = 1− (1−h)ρRθR
ρG+(1−h)ρR

into h∗, yielding

h
∗
(1) =

1

2θRρ
2
R

(
ρR (θR (ρG + 2ρR)− ρGθG (ιG + 1) + u (θR − ιG)) (46)

−
√
ρ2
R

(
ρ2
G

(θG (ιG + 1) + θR)2 + u2 (θR − ιG)2 + 2ρGu (θG (ιG (−θR + ιG + 1) + θR) + θR (θR + ιG))
))

h
∗
(2) =

1

2ρ2
R
θR(ιR + 1)

(
ρR(θR(ιR + 1)(ρG + 2ρR)− ρGθG(ιG + 1) + u(θR − ιG + ιR)) (47)

+

√
ρ2
R

(
ρ2
G

(θG(1 + ιG + θR(1 + ιR))2 + u2(θR − ιG + ιR)2 + 2ρGu(θG(θR(−ιG + 2ιR + 1) + (ιG + 1)(ιG − ιR)) + θR(ιR + 1)(θR + ιG − ιR))
))

and take the partial derivative with respect to ιG. In both cases, dh
∗

dιG
< 0 for all ρG ∈ (0, ρmaxG ), ρR ∈

(0, ρmaxR ), θG ∈ [0, 1], θR ∈ [0, 1], ιG ∈ [0,∞), ιR ∈ [0,∞), h ∈ (0, 1). In addition,
dh∗(2)

dιR
> 0

2 Empirical appendix

2.1 Additional matching solutions

To exploit the micro-level variation in the data, I follow existing studies on civil war and aggregate
atomic-level events into arti�cial spatial cells (???). Although standard practice in con�ict research
has been to divide a study region into a regular grid cells of a �xed size (e.g. 50km×50km), I perform
the analysis using an ensemble of spatial resolutions, from a minimum of 5km×5km to a maximum
of 100km×100km. This approach helps to ensure that my results are not driven by the selection
of an arbitrary geographic scale. More importantly, a variable spatial resolution enables inferences
about the local and regional impact of disarmament � as well as local vs. regional incentives to
use disarmament in the �rst place. An additional rationale is that administrative boundaries in
the Caucasus were frequently changing during this period, sometimes in a manner endogenous to
the �ghting � such as the deportation of Terek Cossacks and subsequent transfer of their lands to
Chechens (?). The use of synthetic spatial units helps to minimize the inference challenges associ-
ated with these developments.

I take a similar approach with regard to temporal resolution. For each counterinsurgency case
in a locality (as de�ned by cell size), I record the number of rebel attacks observed within a given
temporal treatment window before and after the government's operation. The size of this treatment
window varies from a minimum of one week to a maximum of six months. This approach permits
the evaluation of the immediate and longer-term consequences of disarmament, as well as the im-
mediate and longer-term incentives for its use.

Although most applied research seeks to achieve balance across pre-treatment covariates with a
single matching solution, I follow ? in employing a more extensive search across multiple matching
designs, in an e�ort to simultaneously maximize covariate balance between treatment and compar-
ison groups and the size of the matched sample. Speci�cally, I begin with a set of four common
matching methods � propensity scores (PS),1 Mahalanobis distance (MD),2 and genetic matching

1PS minimizes the univariate distance between the propensity scoresDPS(Xi, Xj) = |P (Ti = 1|Xi)−P (Tj = 1|Xj)|
of two observations Xi and Xj , where P (Ti = 1|Xi) is the conditional probability that observation i assigned to
treatment, given observed pre-treatment covariates Xi.

2MD minimizes the multivariate distance between two observations Xi and Xj using DM (Xi, Xj) =√
(Xi −Xj)S−1(Xi −Xj) where S is the sample variance-covariance matrix.
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with and without a nested propensity score model (GMPS, GM)3 � and apply each to the data
at various levels of spatial and temporal aggregation. This approach has a dual purpose. First, it
enables me to select a matched sample that minimizes selection bias while maximizing statistical
leverage. Second, if results are generally consistent across all or most iterations, I can be reasonably
con�dent that the disarmament e�ect is not an artifact of the underlying assumptions of any one
matching technique.

As with the level of aggregation and choice of matching methods, I applied an iterative ap-
proach for the selection of an optimal propensity score model. While the preceding enumeration of
covariates is theory-driven, a �kitchen sink� regression of disarmament on all of them is not a very
e�cient way to model selection into treatment: some of the variables may be stronger predictors
that others, some may overlap, and others may in�uence the probability of disarmament in non-
linear, or non-additive ways. Since the purpose of a propensity score model is, above all, to predict
treatment selection with a high degree of accuracy given a set of observed covariates, misspeci�ca-
tion can be highly consequential in subsequent stages of the analysis. To avoid such problems, I
ran a logistic regression model of disarmament on over 92,000 combinations of the above covariates.
To allow for more complex relationships, I included smoothed functions of variables among the
potential candidates.4 The optimal model was selected as one with the best in-sample predictive
accuracy and goodness of �t, and the lowest degree of multicollinearity.5 Optimal choices varied
by level of aggregation, but the average predictive accuracy in models selected for matching was
AUC = 0.968. This number has the following interpretation: given a randomly selected pair of
treated and non-treated observations, the model will assign a higher propensity score to the treated
unit with a probability of 0.968.

The full ensemble of matching solutions is shown in Figure 1, with the number of matched pairs
on the horizontal axis and level of imbalance on the vertical axis.6 A total of 1,650 matching so-
lutions is presented, using each of four methods (PS, MD, GM and GMPS, the �rst two with and
without calipers), at eleven spatial scales and 25 temporal scales. Following ?, I selected an optimal
matching solution from the cluster on the lower-left corner of the plot, such that no other solution
appears to its left or bottom. This solution was Genetic matching with a nested propensity score
model,7 with data aggregated as a 5km×5km grid and a treatment window of ∆t = 15 weeks. The
total number of matched pairs was 238.

3GM uses a genetic search algorithm to search over a space of distance metrics, minimizing DG(Xi, Xj) =√
(Xi −Xj)′(S−1/2)′WS1/2(Xi −Xj), where W is a k × k positive de�nite weight matrix and S

1/2 is the Cholesky
decomposition of the sample variance-covariance matrix. GMPS includes a vector of propensity scores P (T = 1|X)
among the covariates on which balance is sought (?).

4For instance, the geographic coordinates of a locality could enter the model additively (i.e. LATi + LONGi) or
as a spatial spline (i.e. f(LATi, LONGi)).

5Predictive accuracy was measured as the area under the receiver-operator characteristic curve (AUC), goodness of
�t was measured using the Akaike Information Criterion (AIC), multicollinearity was measured using a combination
of maximum pairwise variable correlation and the Variance In�ation Factor (VIF).

6The imbalance metric used was average standardized di�erence in means, or Imbalancem = 1
K

∑K
k

x̄
T (m)
k

−x̄C(m)
k

σ(x
T (m)
k

)
,

where m indexes the matching solution and k indexes pre-treatment covariates.
7The propensity score model used was

{
Disarmament = logit−1[β0 + β1Russian + β2Percent Urban +

β3log(Population)+β4Females per 1,000 Males+β5Border+β6Prior rebel activity+β7Prior Disarmament+β8Year+
f(Month) + f(Long,Lat) + ε]

}
, where f() is a thin-plate spline.

7



Taking Away the Guns Online Appendix

Figure 1: Ensemble of matching solutions. Solutions closest to bottom-left corner are opti-
mal. Size of points proportional to scale of geographic aggregation. Transparency proportional to
temporal scale (more opaque = larger).
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2.2 Additional models

The current section reports several additional results mentioned in the main text. First among
these is a model-based estimate of the di�erence-in-di�erences reported in the paper's Table 3. The
di�erence-in-di�erences estimating equation is

yit = βPostt + δ(Ti · Postt) + αi + ζt + εit (48)

where yit is the number of rebel attacks in unit i during time period t, Postt is a dummy vari-
able indicating whether time period t is post-treatment, Ti is the treatment indicator, and αi
and ζt are vectors of unit and week �xed e�ects. The di�erence-in-di�erences estimate is δ =
E [(Yt+∆t (T = 1)− Yt−∆t (T = 1))− (Yt+∆t (T = 0)− Yt−∆t (T = 0))], where ∆t is the size of the
post/pre-treatment time window. In the results shown here, I used a windows of 12 weeks.

Table 1 reports the results of the model in 48, estimated on the matched data described above.
The estimate is −0.19 (95% CI: −0.267, −0.119) � slightly smaller in magnitude than the non-
parametric result reported in the main paper, but still negative and highly signi�cant.

The second set of results, shown in Table 2, is from an additional set of model speci�cations with
alternative distributional assumptions, including Poisson and Negative Binomial, as well as logistic
regression with a binary coding of the dependent variable (i.e. some violence vs. no violence). The
results shown here are consistent with those in the main text.
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Table 1: Model-based di�erence-in-di�erences estimate

.

Dependent variable:

Rebel attacks

Di�erence-in-di�erences (δ) −0.193∗∗∗
Std.Err. (0.038)
95% Con�dence Interval (−0.267, −0.119)

Observations 952 (238 matched pairs × 2 time periods)
Log Likelihood −26.706
Akaike Inf. Crit. 573.412

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2: Additional models.

Dependent variable:

Rebel attacks

(count) (count) (binary)

GAM Poisson GAM Negative Binomial GAM logit

(1) (2) (3)

Disarmament −1.223∗∗∗ −1.836∗∗∗ −3.410∗∗∗
(0.422) (0.449) (0.841)

Percent Urban 0.017 0.009 0.026
(0.029) (0.030) (0.039)

log(Population) 2.180∗∗ 2.071∗∗∗ 3.122∗∗

(0.933) (0.691) (1.429)

Females/1,000 Males −0.023∗ −0.012∗ −0.041
(0.013) (0.008) (0.026)

Russian 1.268∗∗ 2.002∗∗∗ 3.967∗∗

(0.643) (0.764) (1.686)

Border −1.192∗ −0.671 −2.379∗∗
(0.620) (0.574) (1.071)

Prior rebel activity 0.181 0.164 0.075
(0.559) (0.530) (0.741)

Prior disarmament −37.976 −39.819 −36.763
(6.4e6) (6.4e6) (6.4e6)

Year −0.295 −0.236 −0.677∗
(0.246) (0.241) (0.352)

f(Long, Lat) EDF: 9.614 EDF: 4.194 EDF: 11.55
χ2: 42.645∗∗∗ χ2: 34.46∗∗∗ χ2: 37.72∗∗∗

f(Month) EDF: 1.000 EDF: 1.002 EDF: 1.000
χ2: 0.268 χ2: 0.41 χ2: 1.287

Constant 560.603 439.813 1,302.918∗

(471.208) (461.250) (674.217)

Observations 476 476 476
(238 matched pairs) (238 matched pairs) (238 matched pairs)

AIC 239.340 275.465 136.637
Adjusted R2 0.501 0.216 0.795
Log Likelihood −118.277 −136.388 −65.988
UBRE 114.549 110.745 65.038

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2.3 Cross-national analysis

Although a systematic cross-national analysis of disarmament lies beyond the scope of this article,
the current section brie�y surveys the relationship between civil con�ict and private possession of
�rearms in modern states.

Because there are currently no comprehensive cross-national data on the timing and location of
forcible disarmament campaigns, I focus this inquiry on general state regulations governing private
gun ownership. To this end, I merged data on national gun laws from the 2007 Small Arms Survey
with data on prior and subsequent intrastate armed con�icts and incidents of political violence.8

Of 134 countries in the combined dataset, 14 had no state-wide restrictions on private gun owner-
ship apart from age requirements, 116 required either a universal background check or �reason to
possess,� and 4 had forbidden all civilian possession of �rearms.

What kinds of countries are more likely to adopt restrictive gun laws? To answer this question,
I ran an ordered logit regression of gun regulations in 2007 (none/background check/forbidden) on
countries' prior levels of urbanization, gender balance, in�ation, ethno-linguistic fractionalization,
civil con�ict, rugged terrain and democracy.9 Table 3 reports these results.

The cross-national predictors of gun control are broadly consistent with those seen in the Cauca-
sus. Consistent with Corollary 2.1, strict gun control policies are less likely where state surveillance
and law enforcement capabilities are more robust, such as in relatively urbanized, diverse countries.10

Consistent with Corollary 3.1, gun policies are more restrictive where poor economic conditions �
like a recent history of high in�ation � limit the government's ability to co-opt public support.11

Do countries with more restrictive gun laws experience less civil con�ict? Without cross-national
data on when, where and why various gun control policies came into force, this question is di�cult
to answer beyond a simple statement of correlation. An initial look at cross-national trends since
2007 suggests that the relationship between gun control and civil con�ict is negative.12 Consistent
with Proposition 2, countries where civilian gun ownership was forbidden in 2007 experienced a 65
percent lower risk of civil con�ict (95% CI: -97.8, 4.6) and 94 percent fewer incidents of political
violence (95% CI: -99.5, -71.1) than countries with no restrictions. Although highly tentative, these
patterns are consistent with the Soviet case.

8Sources include ? and GunPolicy.org for gun regulations, UCDP-PRIO for armed con�icts (?) and MEPV for
political violence (?).

9Data sources include ??? and ?.
10According to Model 1 in Table 3, a country with 100 percent urban population prior to 2007 was 93 percent less

likely (95% CI: -96.5, -93.1) to outlaw civilian gun ownership than one with 8.8 percent urbanization (lowest in the
dataset). A country with an ELF language score of 0.92 was 97.8 percent less likely (95% CI: 96.8, 99.8) to forbid
civilian gun ownership that one with an score of 0.002.

11A country with average annual in�ation of 100 percent in the ten years prior to 2007 was 75.9 percent less likely
(95% CI: -100, -3.2) to have no restrictions on civilian gun ownership than a country with 0 in�ation.

12Model 2 in Table 3 reports a logit regression of civil con�ict on gun ownership regulations, and Model 4 is a
quasipoisson regression of major political violence incidents.
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Table 3: Cross-national regressions.

Dependent variable:

Gun control Civil war Gun control Civil violence

(2007) (UCDP, post-2007) (2007) (MEPV, post-2007)

ordered logit ordered quasipoisson

logit logit

(1) (2) (3) (4)

Gun control (2007) −2.614∗ −1.630∗∗∗
(1.411) (0.523)

Previous civil war 0.321 24.526
(0.658) (1,784.668)

Previous civil violence 0.002 0.027∗∗∗

(0.011) (0.004)
Urbanization −0.035∗∗ 0.015 −0.036∗∗ −0.002

(0.016) (0.018) (0.016) (0.012)
Female population −0.191 −0.039 −0.184 0.012

(0.180) (0.382) (0.179) (0.133)
In�ation 0.032∗ 0.007 0.032∗ 0.003

(0.018) (0.009) (0.018) (0.011)
Ethnolinguistic −6.162∗∗∗ 0.408 −6.150∗∗∗ −0.724
fractionalization (1.827) (1.449) (1.838) (1.008)
Rugged terrain 0.214 2.827∗ 0.228 −0.567

(1.373) (1.683) (1.371) (0.849)
Polity2 score 0.042 −0.245∗∗ 0.040 −0.012

(0.074) (0.111) (0.074) (0.030)
Intercept -17.276 -17.048
(none|intermediate) (9.899)' (9.814)'
Intercept -8.934 -8.728
(intermediate|forbidden) (9.542) (9.462)

Observations 134 134 134 134
Akaike Inf. Crit. 112.92 66.54 113.14 92.25

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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